精英家教網 > 初中數學 > 題目詳情

【題目】已知:在中,,,過點、向過點的直線作垂線,垂足分別為、,于點

1)如圖,求證:;

2)如圖,連接、,若,在不添加任何輔助線的情況下,請直接寫出四個角,使寫出的每一個角的正切值都等于

【答案】1)證明見解析;(2,,

【解析】

1)由同角的余角相等求得,然后利用AAS定理證明,從而求得CD=BE;

2)由題意得AD=CE=2CD=2DE=2EB,然后根據正切的定義和等腰直角三角形的性質求角的正切值,從而求解.

解:(1)∵,

又∵

又∵

2)∵,

AD=CE=2CD=2DE=2EB

∴在RtACD中,,

RtDAE中,,

RtBCE中,,

AC=BCDE=BE

∴∠ABD+CBD=45°,∠BCE+CBD=EDB=45°

∴∠ABD=BCE

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知拋物線為常數,),其對稱軸是,與軸的一個交點在,之間.有下列結論:①;②;③若此拋物線過兩點,則,其中,正確結論的個數為( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,直線分別與x軸,y軸交于點,點C是第一象限內的一點,且,拋物線經過兩點,與x軸的另一交點為D

1)求此拋物線的解析式;

2)判斷直線的位置關系,并證明你的結論;

3)點Mx軸上一動點,在拋物線上是否存在一點N,使以四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,有兩個形狀完全相同的直角三角形ABCEFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發,以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發,以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為xs),FG的延長線交ACH,四邊形OAHP的面積為ycm2)(不考慮點PGF重合的情況).

1)當x為何值時,OPAC
2)求yx之間的函數關系式,并確定自變量x的取值范圍;
3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為1324?若存在,求出x的值;若不存在,說明理由.(參考數據:1142=12996,1152=13225,1162=134564.42=19.36,4.52=20.254.62=21.16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象與軸交于A,B兩點,與y軸交于點C,且關于直線對稱,點A的坐標為(-1,0)

(1)求二次函數的表達式;

(2)連接BC,若點Py軸上時,BPBC的夾角為15°,求線段CP的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點為矩形的對角線上一動點,,,點邊的中點,則周長的最小值是_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1A是⊙O上一動點,P是⊙O外一點,在圖中作出PA最小時的點A

2)如圖2,RtABC中,∠C90°,AC8BC6,以點C為圓心的⊙C的半徑是3.6Q是⊙C上一動點,在線段AB上確定點P的位置,使PQ的長最小,并求出其最小值.

3)如圖3,矩形ABCD中,AB6,BC9,以D為圓心,3為半徑作⊙D,E為⊙D上一動點,連接AE,以AE為直角邊作RtAEF,∠EAF90°tanAEF,試探究四邊形ADCF的面積是否有最大或最小值,如果有,請求出最大或最小值,否則,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,拋物線yx2+bx+cx軸相交于AB兩點,與y軸相交于點C,若A(﹣10),且OC3OA

1)填空:b   c   ;

2)在圖1中,若點M為拋物線上第四象限內一動點,順次連接AC,CM,MB,求四邊形ACMB面積的最大值;

3)在圖2中,將直線BC沿x軸翻折交y軸于點N,過點B的直線與拋物線相交于點D.若∠NBD=∠OCA,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某學校九年級學生每周平均課外閱讀時間的情況,隨機抽查了該學校九年級部分同學,對其每周平均課外閱讀時間進行統計,繪制了如下的統計圖①和圖②.請根據相關信息,解答下列問題:

1)該校抽查九年級學生的人數為    ,圖①中的a值為    ;

2)求統計的這組數據的眾數、中位數和平均數.

    

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视