【題目】某煙機零件加工車間,甲組工人加工零件,工作中有一次停產檢修機器,然后繼續加工.由于任務緊急,乙組工人加入,與甲組工人一起生產零件.兩組各自加工零件的數量y(個)與甲組工人加工時間t(時)之間的函數圖象如圖所示.
(l)求乙組加工零件的數量y與時間t之間的函數關系式.
(2)求甲組加工零件總量a.
【答案】(1) y=120x﹣600;(2)280個.
【解析】分析:(1)由圖象可知,乙組加工零件的數量y與時間t之間是一次函數的關系,函數圖象過點(5,0),(8,360),用待定系數法求y與t之間的函數關系式;(2)把x=7代入(1)所求的函數關系式求出x=7時,y的值,即可得到甲在4時到8時之間每小時加工的零件數量,由此求出8小時時加工的零件數量.
詳解:解:(1)當0≤t<5時,y=0,
當5≤t≤8時,設y與時間t之間的函數關系式為:y=kx+b,
將(5,0),(8,360)代入得:,解得:
,
∴y與時間t之間的函數關系式為:y=120x﹣600;
(2)∵當t=7時,y=120×7﹣600=240,
4時到8時之間每小時加工的零件數量為(240﹣120)÷(7﹣4)=40.
∴a=120+40×(8﹣4)=280(個).
科目:初中數學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經營的A型車去年銷售總額為5萬元,今年每輛售價比去年降低400元,若賣出的數量相同,銷售總額將比去年減少20%.
A,B兩種型號車的進貨和銷售價格如下表:
A型車 | B型車 | |
進貨價格(元) | 1 100 | 1 400 |
銷售價格(元) | 今年的銷售價格 | 2 000 |
(1)今年A型車每輛售價多少元?(用列方程的方法解答)
(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數量不超過A型車數量的兩倍,應如何進貨才能使這批車獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,點P從點B出發,沿B→C→A以每秒1厘米的速度勻速運動到點A.設點P的運動時間為x秒,B、P兩點間的距離為y厘米.
小新根據學習函數的經驗,對函數隨自變量
的變化而變化的規律進行了探究.
下面是小新的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
經測量m的值是(保留一位小數).
(2)建立平面直角坐標系,描出表格中所有各對對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:在曲線部分的最低點時,在△ABC中畫出點P所在的位置.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一條數軸在原點O和點B處各折一下,得到一條“折線數軸”.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數軸上相距29個長度單位.動點P從點A出發,以2單位/秒的速度沿著“折線數軸”的正方向運動,從點O運動到點B期間速度變為原來的一半,之后立刻恢復原速;同時,動點Q從點C出發,以1單位/秒的速度沿著數軸的負方向運動,從點B運動到點O期間速度變為原來的兩倍,之后也立刻恢復原速.設運動的時間為t秒.
問:(1)動點P從點A運動至C點需要多少時間?
(2)P、Q兩點相遇時,求出相遇點M所對應的數是多少;
(3)求當t為何值時,P、O兩點在數軸上相距的長度與Q、B兩點在數軸上相距的長度相等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線AB和CD交于O,∠AOC的度數為x,∠BOE=90°OF平分∠AOD.
(1)當x=20°時,則∠EOC=_____度;∠FOD=_____度.
(2)當x=60°時,射線OE′從OE開始以10°/秒的速度繞點O逆時針轉動,同時射線OF′從OF開始以8°/秒的速度繞點O順時針轉動,當射線OE轉動一周時射線OF′也停正轉動,求至少經過多少秒射線OE′與射線OF重合?
(3)在(2)的條件下,射線OE′在轉動一周的過程中,當∠E′OF′=90°時,請直接寫出射線OE′ 轉動的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數;
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形紙片ABCD中,AB=3,將紙片沿對角線AC對折,BC邊與AD邊交于點E,此時,△CDE恰為等邊三角形,則圖中重疊部分的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O中,AC為直徑,MA、MB分別切⊙O于點A、B.
(1)如圖①,若∠BAC=23°,求∠AMB的大;
(Ⅱ)如圖②,過點B作BD∥MA,交AC于點E,交⊙O于點D,若BD=MA,求∠AMB的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在研究位似問題時,甲、乙同學的說法如下:
甲:如圖①,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點B,F的坐標分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(點P在GC上)是位似中心,則點P的坐標為(0,2).
圖① 圖②
乙:如圖②,正方形網格中,每個小正方形的邊長是1個單位長度,以點C為位似中心,在網格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,則點B1的坐標為(4,0).
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對乙不對 D. 甲不對乙對
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com