【題目】如圖,從一艘船的點A處觀測海岸上高為41m的燈塔BC(觀測點A與燈塔底部C在一個水平面上),測得燈塔頂部B的仰角為35°,則觀測點A到燈塔BC的距離為 . (精確到1m)
【參考數據:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】
科目:初中數學 來源: 題型:
【題目】下列說法正確的有( )
①最大的負整數是﹣1;②|a|=a;③a+5一定比a大;④38萬用科學記數法表示為38×104;⑤單項式﹣ 的系數是﹣2,次數是3;⑥﹣
<﹣
;⑦長方體的截面中,邊數最多的多邊形是七邊形.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A′PB′.過點A′作A′C∥y軸交雙曲線于點C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平行四邊形ABCD中,E是AD上一點,AE=AB,過點E作直線EF,在EF上取一點G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當EF與AB相交時,若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當EF與CD相交時,且∠EAB=90°,請你寫出線段EG、AG、BG之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將△ABC的邊AB繞點A順時針旋轉α得到AB′,邊AC繞點A逆時針旋轉β得到AC′,α+β=180°.連接B′C′,作△AB′C′的中線AD.
(初步感知)
(1)如圖①,當∠BAC=90°,BC=4時,AD的長為______;
(探索證明)
(2)如圖②,△ABC為任意三角形時,猜想AD與BC的數量關系,并證明;
(應用延伸)
(3)如圖③,已知等腰△ACB,AC=BC=m,延長AC到D,延長CB到E,使CD=CE=n,將△CED繞C順時針旋轉一周得到△CE′D′,連接BE′、AD′,若∠CBE′=90°,求AD′的長度(用含m、n的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.
(1)∠ACB=°,理由是:;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD交于點O,E為OC上動點(與點O不重合),作AF⊥BE,垂足為G,交BO于H.連接OG、CG.
(1)求證:AH=BE;
(2)試探究:∠AGO 的度數是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一件工程甲獨做50天可完,乙獨做75天可完,現在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤
A. 10 B. 20 C. 30 D. 25
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com