【題目】圖1的長方形ABCD中,E點在AD上,且BE=2AE.今分別以BE、CE為折線,將A、D向BC的方向折過去,圖2為對折后A、B、C、D、E五點均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數為何?( 。
A. 30 B. 32.5 C. 35 D. 37.5
【答案】D
【解析】
根據直角三角形30°角所對的直角邊等于斜邊的一半可得△ABE、△A′BE皆為30°、60°、90° 的三角形,所以∠AEB=60°,再根據平角等于180°求出∠AED′=60°,即可求得∠DED′=75°,然后根據翻折變換的性質求出∠2=37.5°,再根據兩直線平行,內錯角相等解答.
如圖,
根據題意得:∵BE=2AE=2A′E,∠A=∠A′=90°,
∴△ABE、△A′BE皆為30°、60°、90° 的三角形,
∴∠1=∠AEB=60°,
∴∠AED′=180°﹣∠1﹣∠AEB=180°﹣60°﹣60°=60°,
∴∠DED′=∠AED+∠AED′=15°+60°=75°,
∴∠2=∠DED′=37.5°,
∵A′D′∥BC,
∴∠BCE=∠2=37.5°.
故選D.
科目:初中數學 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是△ABC的邊BC上一點,AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一列按一定順序和規律排列的數:
第一個數是 ;
第二個數是 ;
第三個數是 ;
…
對任何正整數n,第n個數與第(n+1)個數的和等于 .
(1)經過探究,我們發現:
設這列數的第5個數為a,那么 ,
,
,哪個正確?
請你直接寫出正確的結論;
(2)請你觀察第1個數、第2個數、第3個數,猜想這列數的第n個數(即用正整數n表示第n數),并且證明你的猜想滿足“第n個數與第(n+1)個數的和等于 ”;
(3)設M表示 ,
,
,…,
,這2016個數的和,即
,
求證: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在x軸上,A,C兩點的坐標分別為A(0,m),C(n,0),B(﹣5,0),且(n﹣3)2+ =0.一動點P從點B出發,以每秒2單位長度的速度沿射線BO勻速運動,設點P運動的時間為ts.
(1)求A,C兩點的坐標;
(2)連接PA,若△PAB為等腰三角形,求點P的坐標;
(3)當點P在線段BO上運動時,在y軸上是否存在點Q,使△POQ與△AOC全等?若存在,請求出t的值并直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國漢代數學家趙爽為了證明勾股定理,創制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,則S2的值是_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D,F分別在AC,BC邊上,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】西安市在創建文明城區的活動中,有兩個長度相等的彩色磚道鋪設任務,分別交給甲、乙兩個施工隊同時進行施工,如圖是反映所鋪設的彩色磚道的長度y(米)與施工時間x(小時)之間關系的部分圖象,請解答下列問題:
(1)求乙隊在0≤x≤6的時段內y與x的函數關系式.
(2)如果甲隊施工速度不變,乙隊在施工6小時后,施工速度增加到12米/小時,結果兩隊同時完成了任務,求甲隊從開始施工到完成所鋪設的彩色磚道的長度為多少米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com