【題目】如圖,一段拋物線:y=﹣x(x﹣4)(0≤x≤4)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2,交x軸于A2;將C2繞A2旋轉180°得到C3,交x軸于A3;…如此變換進行下去,若點P(17,m)在這種連續變換的圖象上,則m的值為( )
A.2B.﹣2C.﹣3D.3
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發.以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)求P點的坐標(用含x的代數式表示);
(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應的x值;
(3)設四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關系并說明理由;
(4)當x為何值時,△NPC是一個等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,對角線AC、BD交于點O,線段OE⊥OF,且與邊AD、AB交于點E、F.
(1)求證:OE=OF;
(2)連接EF,交AC于點H,若HF:AF=:2,求OH:EF;
(3)若E、F分別在DA、AB延長線上,OE與AB交于點M,若△MOF∽△EAF,AF=1,求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.
(1)從口袋中隨機取出一個球(不放回),接著再取出一個球,請用樹形圖或列表的方法求取出的兩個球一個是紅色球,一個是黃色球的概率;
(2)小明往該口袋中又放入m個紅色球和(m+2)個黃色球,再從口袋中隨機取出一個球,這個球是黃色球的概率為,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了節省材料,某水產養殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網在水庫中圍成了如圖所示的①②③三塊矩形區域,而且這三塊矩形區域的面積相等.設BC的長度為xm,矩形區域ABCD的面積為ym2.
(1)求AE的長(用x的代數式表示)
(2)當y=108m2時,求x的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點O在BC上,⊙O經過點A,點C,且交BC于點D,直徑EF⊥AC于點G.
(1)求證:AB是⊙O的切線;
(2)若AC=8,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點M與點C分別是AC與⊙O的交點,點D是MB與⊙O的交點,點P是AD延長線與BC的交點,且ADAO=AMAP.
(1)連接OP,證明:△ADM∽△APO;
(2)證明:PD是ΘO的切線;
(3)若AD=24,AM=MC,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小區業主委員會決定把一塊長50,寬30
的矩形空地建成健身廣場,設計方案如圖所示,陰影區域為綠化區(四塊綠化區為全等的矩形),空白區域為活動區,且四周的4個出口寬度相同,其寬度不小于14
,不大于26
,設綠化區較長邊為
,活動區的面積為
.
(1)直接寫出:
①用的式子表示出口的寬度為_________;
②與
的函數關系式及
的取值范圍__________________;
(2)若活動區造價為50元/,綠化區造價為40元/
,則綠化區邊長怎么設計,健身廣場投資費用最少,并求出最少費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點A(0,2),且拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足;當x1<x2<0時(x1﹣x2)(y1﹣y2)>0;當0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B、C,且B在C的左側,△ABC有一個內角為60°.則拋物線的解析式是__.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com