精英家教網 > 初中數學 > 題目詳情

【題目】如圖,RtABC,CABC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙OG,H,設BC=x.

(1)求證:四邊形AGDH為菱形;

(2)EF=y,求y關于x的函數關系式;

(3)連結OF,CG.

①若△AOF為等腰三角形,求⊙O的面積;

②若BC=3,則CG+9=______.(直接寫出答案).

【答案】(1)證明見解析;(2)y=x2(x>0);(3)π(2+2)π;4

【解析】

(1)根據線段的垂直平分線的性質以及垂徑定理證明AG=DG=DH=AH即可;
(2)只要證明△AEF∽△ACB,可得解決問題;
(3)①分三種情形分別求解即可解決問題;
②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;

(1)證明:∵GH垂直平分線段AD,

HA=HD,GA=GD,

AB是直徑,ABGH,

EG=EH,

DG=DH,

AG=DG=DH=AH,

∴四邊形AGDH是菱形.

(2)解:∵AB是直徑,

∴∠ACB=90°,

AEEF,

∴∠AEF=ACB=90°,

∵∠EAF=CAB,

∴△AEF∽△ACB,

,

y=x2(x>0).

(3)①解:如圖1中,連接DF.

GH垂直平分線段AD,

FA=FD,

∴當點DO重合時,△AOF是等腰三角形,此時AB=2BC,CAB=30°,

AB=

∴⊙O的面積為π.

如圖2中,當AF=AO時,

AB=

OA=,

AF=,

,

解得x=4(負根已經舍棄),

AB=

∴⊙O的面積為8π.

如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,

∵△ACE∽△ABC,

AC2=AEAB,

16=x

解得x2=2﹣2(負根已經舍棄),

AB2=16+4x2=8+8,

∴⊙O的面積=πAB2=(2+2)π

綜上所述,滿足條件的⊙O的面積為π或(2+2)π;

②如圖3中,連接CG.

AC=4,BC=3,ACB=90°,

AB=5,

OH=OA=,

AE=,

OE=OA﹣AE=1,

EG=EH=,

EF=x2

FG=,AF=,AH=,

∵∠CFG=AFH,FCG=AHF,

∴△CFG∽△HFA,

,

,

CG=,

CG+9=4

故答案為4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數y=的圖象經過點P(4,3)和點B(m,n)(其中0<m<4),作BAx軸于點A,連接PA,PB,OB,已知SAOB=SPAB

(1)求k的值和點B的坐標.

(2)求直線BP的解析式.

(3)直接寫出在第一象限內,使反比例函數大于一次函數的x的取值范圍是   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線經過點A,0),B0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數;

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲口袋里裝有2個相同的小球,它們分別寫有數字12;乙口袋里裝有3個相同的小球,它們分別寫有數字3,4,5;丙口袋里有2個相同的小球,它們分別寫有數字6,7,從三個口袋中各隨機地取出1個小球,按要求解答下列問題:

(1)畫出樹形圖”;

(2)取出的3個小球上只有1個偶數數字的概率是多少?

(3)取出的3個小球上全是奇數數字的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,3.

(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為________;

(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數字,求這兩個數字之和是3的倍數的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,ADE經順時針旋轉后與ABF重合.

(1)旋轉中心是點________,旋轉了________度.

(2)如果連接EF,那么AEF是怎樣的三角形?為什么?

(3)請用尺規作圖畫出AEF的外接圓,標明圓心M的位置,量出半徑的長度為________,并判斷點C與⊙M的位置關系為_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程:

(1)(x+8)2=36;

(2)x(5x+4)-(4+5x)=0;

(3)x2+3=3(x+1);

(4)2x2x-1=0(用配方法).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合).

(1)若點A在優弧上,且圓心O在∠BAD的內部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當圓心O在∠BAD的內部時,求∠OBA+ODA的度數;

②當圓心O在∠BAD的外部時,請畫出圖形并直接寫出∠OBA與∠ODA的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1cm、3cm、5cm、7cm、9cm的五條線段中,任選三條可以構成三角形的概率是________%.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视