【題目】如圖,點P是直線y=3上的動點,連接PO并將PO繞P點旋轉90°到PO′,當點O′剛好落在雙曲線(x>0)上時,點P的橫坐標所有可能值為_____.
【答案】,
.
【解析】
分點P在由在y軸的左側和點P在y軸的右側兩種情況求解即可.
當點P在由在y軸的左側時,如圖1,過點P作PM⊥x軸于點M,過點O′作O′N垂直于直線y=3于點N,
∵∠OPN+∠NP O′=90°,∠P O′N+∠NP O′=90°,
∴∠OPN=∠P O′N,
∵直線y=3與x軸平行,
∴∠POM=∠O P N ,
∴∠POM=∠P O′N,
在△POM和△P O′N中,
,
∴△POM≌△P O′N,
∴OM= O′N,PM=PN,
設點P的橫坐標為t,則OM= O′N=-t,PM=PN=3,
∴GN=3+t,
∴點O′的坐標為(3+t,3-t),
∵點O′在雙曲線(x>0)上,
∴(3+t)(3-t)=6,
解得,t=(舍去)或t=-
,
∴點P的橫坐標為-;
當點P在由在y軸的右側時,
如圖2,過點O′作O′H垂直于直線y=3于點H,
類比圖1的方法易求點P的橫坐標為,
如圖3,過點P作PE⊥x軸于點E,過點O′作O′F垂直于直線y=3于點F,
類比圖1的方法易求點P的橫坐標為,
綜上,點P的橫坐標為,
.
故答案為:,
.
科目:初中數學 來源: 題型:
【題目】(1)如圖,已知點在線段
上,且
,
,點
、
分別是
、
的中點,求線段
的長度;
(2)若點是線段
上任意一點,且
,
,點
、
分別是
、
的中點,請直接寫出線段
的長度;(結果用含
、
的代數式表示)
(3)在(2)中,把點是線段
上任意一點改為:點
是直線
上任意一點,其他條件不變,則線段
的長度會變化嗎?若有變化,求出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數量關系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC頂點A、C分別在ON、OM上,點D是AB邊上的中點,當點A在邊ON上運動時,點C隨之在邊OM上運動,則OD的最大值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據材料,解答問題
如圖,數軸上有點,對應的數分別是6,-4,4,-1,則
兩點間的距離為
;
兩點間的距離為
;
兩點間的距離為
;由此,若數軸上任意兩點
分別表示的數是
,則
兩點間的距離可表示為
.反之,
表示有理數
在數軸上的對應點
之間的距離,稱之為絕對值的幾何意義.
問題應用1:
(1)如果表示-1的點和表示
的點
之間的距離是2,則點
對應的
的值為___________;
(2)方程的解
____________;
(3)方程的解
______________ ;
問題應用2:
如圖,若數軸上表示的點為
.
(4)的幾何意義是數軸上_____________,當
__________,
的值最小是____________;
(5)的幾何意義是數軸上_______,
的最小值是__________,此時點
在數軸上應位于__________上;
(6)根據以上推理方法可求的最小值是___________,此時
__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網購”給我們的生活帶來了很多便利,初二數學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統計圖.
(1)根據圖中的信息求出_______,
_______;
(2)請你幫助他們將這兩個統計圖補全,并計算扇形統計圖中“支付寶”部分所對應的圓心角的度數為_____;
(3)根據抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,EO⊥AB于點O,FO⊥CD于點O.
(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;②______________.
(2)如果∠AOD=40°,那么:
①根據__________,可得∠BOC=________;
②求∠POF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(4,0)兩點,與y軸交于點C(0,2),點M(m,n)是拋物線上一動點,位于對稱軸的左側,并且不在坐標軸上,過點M作x軸的平行線交y軸于點Q,交拋物線于另一點E,直線BM交y軸于點F.
(1)求拋物線的解析式,并寫出其頂點坐標;
(2)當S△MFQ:S△MEB=1:3時,求點M的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com