【題目】我市為迎接省運會,要將某一城市美化工程招標,有甲、乙兩個工程隊投標,經測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內完成,在不超過計劃天數的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
【答案】
(1)解:設乙隊單獨完成這項工程需x天,根據題意得, ,
解得,x=90,
經檢驗,x=90是原方程的根.
答:乙隊單獨完成這項工程需90天
(2)解:由甲隊獨做需:3.5×60=210(萬元);
乙隊獨做工期超過70天,不符合要求;
甲乙兩隊合作需1÷( )=36天,
需要:36×(3.5+2)=198(萬元),
答:由甲乙兩隊全程合作最省錢
【解析】(1)這是一道工程問題,工程問題,常把工作總量看成單位1,甲隊單獨完成這項工程需要60天,則甲隊的工作效率是 ,設乙隊單獨完成這項工程需x天 ,則乙隊的工作效率是
,根據甲獨作的工作量+甲乙合作的工作量=1列出方程,求解并檢驗即可 ;
(2)首先根據單價乘以時間算出甲獨作需要的總錢數 ;由于乙隊獨做工程需要90天 ,而該工程計劃在70天內完成,故不能由乙隊單獨完成;接著算出甲乙兩隊合作需要的時間,然后根據單價乘以時間算出甲乙合作需要的總錢數 ;進行比較即可得出答案 。
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)圖中的全等三角形有;
(2)從你找到的全等三角形中選出其中一對加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4.
(1)求經過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“六一”兒童節,某玩具超市設立了一個如圖所示的可以自由轉動的轉盤,開展有獎購買活動.顧客購買玩具就能獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一區域就可以獲得相應獎品.下表是該活動的一組統計數據.下列說法不正確的是( )
轉動轉盤的次數n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”區域的次數m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“鉛筆”區域的頻率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
A.當n很大時,估計指針落在“鉛筆”區域的頻率大約是0.70
B.假如你去轉動轉盤一次,獲得鉛筆的概率大約是0.70
C.如果轉動轉盤2000次,指針落在“文具盒”區域的次數大約有600次
D.轉動轉盤10次,一定有3次獲得文具盒
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙三個登山愛好者經常相約去登山,今年1月甲參加了兩次登山活動.
(1)1月1日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,結果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米?
(2)1月6日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發0.5小時,結果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,AB=8,BC=15,CA=17,則下列結論不正確的是( )
A.△ABC是直角三角形,且AC為斜邊
B.△ABC是直角三角形,且∠ABC=90°
C.△ABC的面積是60
D.△ABC是直角三角形,且∠A=60°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com