【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,2),點M的極坐標為 ,若直線l過點P,且傾斜角為
,圓C以M為圓心,3為半徑. (Ⅰ)求直線l的參數方程和圓C的極坐標方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|PA||PB|.
科目:初中數學 來源: 題型:
【題目】宜賓市某化工廠,現有A種原料52千克,B種原料64千克,現用這些原料生產甲、乙兩種產品共20件.已知生產1件甲種產品需要A種原料3千克,B種原料2千克;生產1件乙種產品需要A種原料2千克,B種原料4千克,則生產方案的種數為( 。
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數 .(a為常數,a>0) (Ⅰ)若
是函數f(x)的一個極值點,求a的值;
(Ⅱ)求證:當0<a≤2時,f(x)在 上是增函數;
(Ⅲ)若對任意的a∈(1,2),總存在 ,使不等式f(x0)>m(1﹣a2)成立,求實數m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f(x0)=3,x0∈( ,
),則sinx0的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN= π,在△ABC中,角A、B、C所對的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知橢圓 內有一點M(2,1),過M的兩條直線l1 , l2分別與橢圓E交于A,C和B,D兩點,且滿足
(其中λ>0,且λ≠1),若λ變化時,AB的斜率總為
,則橢圓E的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】據某市地產數據研究院的數據顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產數據研究院研究發現,3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關關系,試建立y關于x的回歸方程(系數精確到0.01),政府若不調控,依次相關關系預測第12月份該市新建住宅銷售均價;
(Ⅱ)地產數據研究院在2016年的12個月份中,隨機抽取三個月份的數據作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數為X,求X的分布列和數學期望.
參考數據: =25,
=5.36,
=0.64
回歸方程 =
x+
中斜率和截距的最小二乘估計公式分別為:
=
,
=
﹣
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)= (e為自然對數的底數),曲線y=f(x)在(1,f(1))處的切線與直線4x+3ey+1=0互相垂直. (Ⅰ)求實數a的值;
(Ⅱ)若對任意x∈( ,+∞),(x+1)f(x)≥m(2x﹣1)恒成立,求實數m的取值范圍;
(Ⅲ)設g(x)= ,Tn=1+2[g(
)+g(
)+g(
)+…+g(
)](n=2,3…).問:是否存在正常數M,對任意給定的正整數n(n≥2),都有
+
+
+…+
<M成立?若存在,求M的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區住宅用電之電費計算規則如下:每月每戶不超過50度時,每度以4元收費;超過50度的部分,每度以5元收費,并規定用電按整數度計算(小數部份無條件舍去) .
(1)下表給出了今年3月份A,B兩用戶的部分用電數據,請將表格數據補充完整,
電量(度) | 電費(元) | |
A | 240 | |
B | ||
合計 | 90 |
(2)若假定某月份C用戶比D用戶多繳電費38元,求C用戶該月可能繳的電費為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com