【題目】如圖,過、
作x軸的垂線,分別交直線
于C、D兩點
拋物線
經過O、C、D三點.
求拋物線的表達式;
點M為直線OD上的一個動點,過M作x軸的垂線交拋物線于點N,問是否存在這樣的點M,使得以A、C、M、N為頂點的四邊形為平行四邊形?若存在,求此時點M的橫坐標;若不存在,請說明理由;
若
沿CD方向平移
點C在線段CD上,且不與點D重合
,在平移的過程中
與
重疊部分的面積記為S,試求S的最大值.
【答案】(1);(2)
或
或
;(3)
.
【解析】
(1)利用待定系數法求出拋物線的解析式;
(2)由題意,可知MN∥AC,因為以A、C、M、N為頂點的四邊形為平行四邊形,則有MN=AC=3.設點M的橫坐標為x,則求出MN=|x2﹣4x|;解方程|
x2﹣4x|=3,求出x的值,即點M橫坐標的值;
(3)設水平方向的平移距離為t(0≤t<2),利用平移性質求出S的表達式:S(t﹣1)2
;當t=1時,s有最大值為
.
(1)由題意,可得C(1,3),D(3,1).
∵拋物線過原點,∴設拋物線的解析式為:y=ax2+bx,∴,解得
,∴拋物線的表達式為:y
x2
x.
(2)存在.
設直線OD解析式為y=kx,將D(3,1)代入,求得k,∴直線OD解析式為y
x.
設點M的橫坐標為x,則M(x,x),N(x,
x2
x),∴MN=|yM﹣yN|=|
x﹣(
x2
x)|=|
x2﹣4x|.
由題意,可知MN∥AC,因為以A、C、M、N為頂點的四邊形為平行四邊形,則有MN=AC=3,∴|x2﹣4x|=3.
若x2﹣4x=3,整理得:4x2﹣12x﹣9=0,解得:x
或x
;
若x2﹣4x=﹣3,整理得:4x2﹣12x+9=0,解得:x
,∴存在滿足條件的點M,點M的橫坐標為:
或
或
.
(3)∵C(1,3),D(3,1),∴易得直線OC的解析式為y=3x,直線OD的解析式為yx.
如解答圖所示,設平移中的三角形為△A'O'C',點C'在線段CD上.
設O'C'與x軸交于點E,與直線OD交于點P;
設A'C'與x軸交于點F,與直線OD交于點Q.
設水平方向的平移距離為t(0≤t<2),則圖中AF=t,F(1+t,0),Q(1+t,t),C'(1+t,3﹣t).
設直線O'C'的解析式為y=3x+b,將C'(1+t,3﹣t)代入得:b=﹣4t,∴直線O'C'的解析式為y=3x﹣4t,∴E(t,0).
聯立y=3x﹣4t與yx,解得:x
t,∴P(
t,
t).
過點P作PG⊥x軸于點G,則PGt,∴S=S△OFQ﹣S△OEP
OFFQ
OEPG
(1+t)(
t)
t
t
(t﹣1)2
當t=1時,S有最大值為,∴S的最大值為
.
科目:初中數學 來源: 題型:
【題目】已知二次函數與一次函數
,令W=
.
(1)若、
的函數圖像交于x軸上的同一點.
①求的值;
②當為何值時,W的值最小,試求出該最小值;
(2)當時,W隨x的增大而減小.
①求的取值范圍;
②求證: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發現,這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax-2x+c(a≠0)與x軸,y軸分別交于點A,B,C三點,已知點(-2,0),C(0,-8),點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標;
(2)如圖,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EB直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠計劃生產A、B兩種產品共50件,需購買甲、乙兩種材料.生產一件A產品需甲種材料30千克、乙種材料10千克;生產一件B產品需甲、乙兩種材料各20千克.經測算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產B產品不少于28件,問符合條件的生產方案有哪幾種?
(3)在(2)的條件下,若生產一件A產品需加工費200元,生產一件B產品需加工費300元,應選擇哪種生產方案,使生產這50件產品的成本最低?(成本=材料費+加工費)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2a的等邊三角形ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是( )
A. aB. aC.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD、BC于E、F,作BH⊥AF于點H,分別交AC、CD于點G、P,連結GE、GF.
(1)試判斷四邊形BEGF的形狀并說明理由.
(2)求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com