精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,ABAC,∠A=108°.

1)實踐與操作:作AB的垂直平分線DE,與ABBC分別交于點D,E(用尺規作圖.保留作圖痕跡,不要求寫作法)

2)推理與計算:求∠AEC的度數.

【答案】(1)見解析;(2)72°

【解析】

(1)作AB的垂直平分線DE;(2)根據等腰三角形的性質計算B的度數,根據線段的垂直平分線的性質得AE=BE,可計算BAE=36°,由外角性質可得結論.

(1)如圖所示:

則DE是AB的垂直平分線;

(2)AB=AC,BAC=108°,

∴∠B=C=36°,

DE是AB的垂直平分線,

AE=BE,

∴∠B=BAE=36°,

∴∠AEC=B+BAE=36°+36°=72°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC于點D,AE是∠BAC的平分線,∠B=30°,∠C=70°,分別求:

(1)∠BAC的度數;

(2)∠AED的度數;

(3)∠EAD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數y=kx+b的圖象交反比例函數 圖象于點A,B,交x軸于點C.

(1)求m的取值范圍;
(2)若點A的坐標是(1,﹣4),且 ,求m的值和一次函數的解析式;
(3)在(2)的情況下,請直接寫出不等式 的解集.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,∠D+ABC=180°,CEAB,垂足為E,若△ACD和△ABC的面積分別為5038,則△CBE的面積為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲乙兩件服裝的進價共500元,商場決定將甲服裝按30%的利潤定價,乙服裝按20%的利潤定價,實際出售時,兩件服裝均按9折出售,商場賣出這兩件服裝共獲利67元.
(1)求甲乙兩件服裝的進價各是多少元;
(2)由于乙服裝暢銷,制衣廠經過兩次上調價格后,使乙服裝每件的進價達到242元,求每件乙服裝進價的平均增長率;
(3)若每件乙服裝進價按平均增長率再次上調,商場仍按9折出售,定價至少為多少元時,乙服裝才可獲得利潤(定價取整數).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知某校女子田徑隊23人年齡的平均數和中位數都是13歲,但是后來發現其中一位同學的年齡登記錯誤,將14歲寫成15歲,經重新計算后,正確的平均數為a歲,中位數為b歲,則下列結論中正確的是( )
A.a<13,b=13
B.a<13,b<13
C.a>13,b<13
D.a>13,b=13

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四個完全相同的小球上分別寫上1,2,3,4四個數字,然后裝入一個不透明的口袋內攪勻,從口袋內取出一個球記下數字后作為點P的橫坐標x,放回袋中攪勻,然后再從袋中取出一個球記下數字后作為點P的縱坐標y,則點P(x,y)落在直線y=﹣x+5上的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將等腰直角三角形ABC繞點A逆時針旋轉15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學活動課上,某學習小組對有一內角為120°的平行四邊形ABCD(∠BAD=120°)進行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內旋轉,且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發現
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;

(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數t,則t=

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视