【題目】如圖,已知∠1和∠2互為補角,∠A=∠D.求證:AB∥CD.
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD(______).
又∠1和∠2互為補角(已知),
∴∠CGD和∠2互為補角,
∴AE∥FD(_________),
∴∠A=∠BFD(_______).
∵∠A=∠D(已知),
∴∠BFD=∠D(_______),
AB∥CD(______).
【答案】對頂角相等; 同旁內角互補,兩直線平行; 兩直線平行,同位角相等; 等量代換; 內錯角相等,兩直線平行.
【解析】
求出∠CGD和∠2互為補角,根據平行線的判定得出AE∥DF,根據平行線的性質得出∠AEC=∠D,求出∠AEC=∠A,根據平行線的判定即可得出結論.
∵∠1與∠CGD是對頂角,∴∠1=∠CGD(對頂角相等).
又∠1和∠2互為補角(已知),∴∠CGD和∠2互為補角,∴AE∥FD(同旁內角互補,兩直線平行),∴∠A=∠BFD(兩直線平行,同位角相等).
∵∠A=∠D(已知),∴∠BFD=∠D(等量代換),∴AB∥CD(內錯角相等,兩直線平行).
故答案為:對頂角相等;同旁內角互補,兩直線平行;兩直線平行,同位角相等;等量代換;內錯角相等,兩直線平行.
科目:初中數學 來源: 題型:
【題目】某中學開展“唱紅歌”比賽活動,九年級(1)、(2)班根據初賽成績,各選出5名選手參加復賽,兩個班各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.
(1)根據圖示填寫下表:
班級 | 中位數(分) | 眾數(分) |
九(1) | 85 | |
九(2) | 100 |
(2)通過計算得知九(2)班的平均成績為85分,請計算九(1)班的平均成績.
(3)結合兩班復賽成績的平均數和中位數,分析哪個班級的復賽成績較好.
(4)已知九(1)班復賽成績的方差是70,請計算九(2)班的復賽成績的方差,并說明哪個班的成績比較穩定?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側,BD⊥AE于點D,CE⊥AE于點E.
(1)求證:BD=DE+CE;
(2)若直線AE繞點A旋轉到圖2位置時(BD<CE),其余條件不變,問BD與DE,CE的關系如何,請證明;
(3)若直線AE繞點A旋轉到圖3時(BD>CE),其余條件不變,BD與DE,CE的關系怎樣?請直接寫出結果,不須證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為
,點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著
的路線移動
即:沿著長方形移動一周
.
寫出點B的坐標
______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關于原點對稱的△A2B2C2;
(3)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經過點D,E是⊙O上一點,且∠AED=45°.
(1)試判斷CD與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為3,sin∠ADE= ,求AE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富學生的課外活動,某校決定購買100個籃球和副羽毛球拍.經調查發現:甲、乙兩個體育用品商店以同樣的價格出售同種品牌的籃球和羽毛球拍.已知每個籃球比每副羽毛球拍貴25元,兩個籃球與三副羽毛球拍的費用正好相等.經洽談,甲商店的優惠方案是:每購買十個籃球,送一副羽毛球拍;乙商店的優惠方案是:若購買籃球數超過80個,則購買羽毛球拍可打八折.
(1)求每個籃球和每副羽毛球拍的價格分別是多少?
(2)請用含的代數式分別表示出到甲商店和乙商店購買所花的費用;
(3)請你決策:在哪家商店購買劃算?(直接寫出結論)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com