【題目】解下列方程
(1)
(2)
(3)
(4)
【答案】(1)x=4;(2)x=0;(3)x=5;(4)x=-9.2.
【解析】
(1)方程移項合并,把x系數化為1,即可求出解;
(2)方程去括號,移項合并,把x系數化為1,即可求出解;
(3)方程去分母,去括號,移項合并,把x系數化為1,即可求出解;
(4)方程整理后,去分母,去括號,移項合并,把x系數化為1,即可求出解.
解:(1)
移項合并得:3x=12,
解得:x=4;
(2)
去括號得:2-3x-1=1-2x,
移項合并得:x=0;
(3)
去分母得:12x-8x+4=12-9x+57,
移項合并得:13x=65,
解得:x=5;
(4)
去分母得:2(x-3)-5(x+4)=1.6
移項合并得-3x=27.6,
解得x=-9.2.
科目:初中數學 來源: 題型:
【題目】如圖1,以矩形的頂點
為原點,
所在直線為
軸,
所在直線為
軸,建立平面直角坐標系,頂點為點
的拋物線
經過點
,點
.
(1)寫出拋物線的對稱軸及點的坐標,
(2)將矩形繞點
順時針旋轉
得到矩形
.
①當點恰好落在
的延長線上時,如圖2,求點
的坐標.
②在旋轉過程中,直線與直線
分別與拋物線的對稱軸相交于點
,點
.若
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB
(1)求證:四邊形ABCD是菱形
(2)若AC=16,BD=12,試求點O到AB的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則B2的坐標為_____;點B2016的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數軸上A,B兩點對應的有理數分別為10和15,點P從點A出發,以每秒1個單位長度的速度沿數軸正方向運動,點Q同時從原點O出發,以每秒2個單位長度的速度沿數軸正方向運動,設運動時間為t秒.
(1)當0<t<5時,用含t的式子填空:
BP=_______,AQ=_______;
(2)當t=2時,求PQ的值;
(3)當PQ=AB時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.
(1)求證:△PFA∽△ABE;
(2)當點P在線段AD上運動時,設PA=x,是否存在實數x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學改革學生的學習模式,變“老師要學生學習”為“學生自主學習”,培養了學生自主學習的能力.小華與小明同學就“你最喜歡哪種學習方式”隨機調查了他們周圍的一些同學,根據收集到的數據繪制了以下兩個不完整的統計圖(如圖).
請根據上面兩個不完整的統計圖回答以下4個問題:
(1)這次抽樣調查中,共調查了_____名學生.
(2)補全條形統計圖中的缺項.
(3)在扇形統計圖中,選擇教師傳授的占_____%,選擇小組合作學習的占_____%.
(4)根據調查結果,估算該校1800名學生中大約有_____人選擇小組合作學習模式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一張長方形的紙對折,如圖所示可得到一條折痕(圖中虛線):繼續對折,對折時每次折痕與上次的折痕保持平行,連續對折三次后,可以得到7條折痕,那么對折n次,可以得到___________條折痕.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求點C的坐標;
(2)將△ABC沿x軸的正方向平移,在第一象限內B、C兩點的對應點B'、C'正好落在某反比例函數圖象上.請求出這個反比例函數和此時的直線B'C'的解析式.
(3)若把上一問中的反比例函數記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內當y1<y2時x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com