如圖1,在平面直角坐標系中,已知點M的坐標是(3,0),半徑為2的⊙M交x軸于E、F
兩點,過點P(-1,0)作⊙M的切線,切點為點A,過點A作AB⊥x軸于點C,交⊙M于
點B。拋物線y=ax2+bx+c經過P、B、M三點。
1.(1)求該拋物線的函數表達式;(3分)
2.(2)若點Q是拋物線上一動點,且位于P、B兩點之間,設四邊形APQB的面積為S,點Q的
橫坐標為x,求S與x之間的函數關系式,并求S的最大值和此時點Q的坐標;(4分)
3.(3)如圖2,將弧AEB沿弦AB對折后得到弧AE′B,試判斷直線AF與弧AE′B的位置關系,
并說明理由。(3分)
1.(1)如圖5,依題意,可知:
點
∵拋物線y=ax2+bx+c經過P、B、M三點
∴
解得:
∴拋物線的解析式為:
2.(2)如圖6,依題意設點Q的坐標為(x,y0),
過點Q作QN⊥x軸交于點N,連接QP、QB
∵點Q是拋物線上一動點,且位于P、B兩點之間,
∴,-1≤x≤2
∴四邊形APQB的面積為S為:
;(其中,-1≤x≤2)
即:;(其中,-1≤x≤2)
∴ 當時,四邊形APQB的面積S有最大值,
,
此時,,
,點Q的坐標為(-1,0),
3.(3)直線AF與弧AE′B相切,理由如下:
如圖7,由(1)可知,PA是⊙M的切線,且
點
∴△ACP≌△ACF
∵將弧AEB沿弦AB對折后得到弧AE′B
∴PA是弧AEB的切線
∴FA是弧AE′B的切線
即:直線AF與弧AE′B相切
解析:略
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數學 來源:同步輕松練習 八年級 數學 上 題型:059
學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規定填寫下表:
(2)根據表中的數據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.
(3)請你猜一猜上述各點會在某一個函數圖象上嗎?如果在某一函數圖象上,求出該函數的解析式,并利用你探求的結果,求出當n=10時,s的值.
查看答案和解析>>
科目:初中數學 來源:2013-2014學年北京海淀區九年級第一學期期中測評數學試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發現:
如圖1,當點為旋轉中心時,點
繞著點
旋轉180°得到
點,點
再繞著點
旋轉180°得到
點,這時點
與點
重合.
如圖2,當點、
為旋轉中心時,點
繞著點
旋轉180°得到
點,點
繞著點
旋轉180°得到
點,點
繞著點
旋轉180°得到
點,點
繞著點
旋轉180°得到
點,小明發現P、
兩點關于點
中心對稱.
(1)請在圖2中畫出點、
,
小明在證明P、
兩點關于點
中心對稱時,除了說明P、
、
三點共線之外,還需證明;
(2)如圖3,在平面直角坐標系xOy中,當、
、
為旋轉中心時,點
繞著點
旋轉180°得到
點;點
繞著點
旋轉180°得到
點;點
繞著點
旋轉180°得到
點;點
繞著點
旋轉180°得到點
. 繼續如此操作若干次得到點
,則點
的坐標為(),點
的坐為.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com