【題目】如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(2,1)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉,第一次旋轉至圖①位置,第二次旋轉至圖②位置……,則正方形鐵片連續旋轉2018次后,點P的坐標為_____.
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線y=-x+
與坐標軸分別交于點A、B,且點C在x軸負半軸上,且AB:AC=1:2.
(1)求A、C兩點的坐標;
(2)若點M從點C出發,以每秒1個單位的速度沿射線CB運動,連接AM,設△ABM的面積為S,點M的運動時間為t,寫出S關于t的函數關系式,并寫出自變量的取值范圍;
(3)點P是y軸上的點,在坐標平面內是否存在點Q,使以A、B、P、Q為頂點的四邊形是菱形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,把拋物線 先向右平移1個單位長度,再向下平移4個單位長度,得到拋物線
,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為M.
(1)寫出h、k的值及點A、B的坐標;
(2)判斷 的形狀,并計算其面積;
(3)點P是拋物線上的一動點,在y軸上存在點Q,使以點A、B、P、Q為頂點組成的四邊形是平行四邊形,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線x=2,下列結論:①abc>0;②9a+c>3b;③4a+b=0;④當x>-1時,y的值隨x值的增大而增大.其中正確的結論有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=-x2+bx+c交x軸于另一點C,點D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點,(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線y=-x2+bx+c上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為了增強學生體質,全面實施“學生飲用奶”營養工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數統計圖:
(1)本次被調查的學生有 名;
(2)補全上面的條形統計圖1,并計算出喜好“菠蘿味”牛奶的學生人數在扇形統計圖中所占圓心角的度數;
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙三位運動員在相同條件下各射靶次,每次射靶的成績如下:
甲:,
,
,
,
,
,
,
,
,
乙:,
,
,
,
,
,
,
,
,
丙:,
,
,
,
,
,
,
,
,
(1)根據以上數據完成下表:
平均數 | 中位數 | 方差 | |
甲 | |||
乙 | |||
丙 |
(2)比賽時三人依次出場,順序由抽簽方式決定,求甲、乙相鄰出場的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】除夕夜中央電視臺舉辦的“2019年春節聯歡晚會”受到廣泛的關注,重慶某組織就“2019年春節聯歡晚會”節目的喜愛程度,在解放碑進行了問卷調查,并將問卷調查的結果分為“非常喜歡”“比較喜歡”“感覺一般”“不太喜歡”四個等級,分別記作,
,
,
;根據調查結果繪制出如圖所示的扇形統計圖和條形統計圖,請結合圖中所給信息解答下列問題:
(1)此次參與調查的人數是_________,扇形統計圖中等級C人數對應的圓心角是_____________度,并將條形統計圖補充完整;
(2)結合調查結果談談,如果你是春晚導演,你將如何設計節目從而提高年輕人對晚會的喜愛程度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:將矩形紙片ABCD折疊,使點A與點C重合(點D與D'為對應點),折痕為EF,連接AF.
(1)如圖1,求證:四邊形AECF為菱形;
(2)如圖2,若FC=2DF,連接AC交EF于點O,連接DO、D'O,在不添加任何輔助線的情況下,請直接寫出圖2中所有等邊三角形.
(圖1) (圖2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com