【題目】如圖①,在△ABC中,AB=AC,點P為邊BC上異于B和C的任意一點,過點P作PD⊥AB于D,作PE⊥AC于E,過點C作CF⊥AB于F,求證:PD+PE=CF.
(1)有下面兩種證明思路:(一)如圖②,連接AP,由△ABP于△ACP面積之和等于△ABC的面積證得PD+PE=CF.(二)如圖②,過點P作PG⊥CF,垂足為G,可以證明:PD=GF,PE=CG,則PD+PE=CF.
請你選擇其中的一種證明思路完成證明:
(2)探究:如圖③,當點P在BC的延長線上時,其它條件不變,探究并證明PD、PE和CF間的數量關系;
(3)猜想:當點P在CB的延長線上時,其它條件不變,猜想PD、PE和CF間的數量關系(不要求證明)
【答案】(1)PD+PE=CF(2)PD﹣PE=CF(3)PE﹣PD=CF
【解析】
(1)連接AP,根據S△ABP+S△ACP=S△ABC列式整理即可得解;
(2)連接AP,根據S△ABP﹣S△ACP=S△ABC列式整理即可得解;
(3)連接AP,根據S△ACP﹣S△ABP=S△ABC列式整理即可得解.
(1)如圖②,連接AP,
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABP=ABPD,S△ACP=
ACPE,S△ABC=
ABCF,
∵S△ABP+S△ACP=S△ABC,
∴ABPD+
ACPE=
ABCF,
又AB=AC,
∴PD+PE=CF;
(2)PD﹣PE=CF
如圖③,連接AP,
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABP=ABPD,S△ACP=
ACPE,S△ABC=
ABCF,
∵S△ABP﹣S△ACP=S△ABC,
∴ABPD﹣
ACPE=
ABCF,
又∵AB=AC,
∴PD﹣PE=CF;
(3)PD﹣PE=CF,
如圖4,連接AP,
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABP=ABPD,S△ACP=
ACPE,S△ABC=
ABCF,
∵S△ACP﹣S△ABP=S△ABC,
∴ACPE﹣
ABPD=
ABCF,
又∵AB=AC,
∴PE﹣PD=CF;
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣(a+1)x﹣3與x軸交于點A、B,與y軸交于點C,∠BCO=45°,點M為線段BC上異于B、C的一動點,過點M與y軸平行的直線交拋物線于點Q,點R為線段QM上一動點,RP⊥QM交直線BC于點P.設點M的橫坐標為m.
(1)求拋物線的表達式;
(2)當m=2時,△PQR為等腰直角三角形,求點P的坐標;
(3)①求PR+QR的最大值;②求△PQR面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數y= (x>0)的圖象經過A、B兩點,菱形ABCD在第一象限內,邊BC于x軸平行.若A、B兩點的縱坐標分別為3和1,則菱形ABCD的面積為( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
甲、乙兩人同時從相距25千米的A地去B 地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時距他們出發的時間恰好3小時,求兩人的速度各是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在△ABC中,AD是BC邊的中線,過A點作AE∥BC與過D點作DE∥AB交于點E,連接CE.
(1)求證:四邊形ADCE是平行四邊形.
(2)連接BE,AC分別與BE、DE交于點F、G,如圖(2),若AC=6,求FG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y軸上有一點P(0,2),作點P關于點A的對稱點P1,作點P1關于點B的對稱點P2,作點P2關于點C的對稱點P3,作點P3關于點D的對稱點P4,作點P4關于點A的對稱點P5,作點P5關于點B的對稱點P6,…,按此規律操作下去,則點P2017的坐標為( 。
A. (2,0) B. (0,2) C. (0,﹣2) D. (﹣2,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y=的圖象交于A(1,6),B(3,n)兩點.
(1)求反比例函數和一次函數的表達式;
(2)根據圖象寫出不等式kx+b﹣>0的解集;
(3)若點M在x軸上、點N在y軸上,且以M、N、A、B為頂點的四邊形是平行四邊形,請直接寫出點M、N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】①在數軸上沒有點能表示+1;②無理數是開不盡方的數;③存在最小的實數;④4的平方根是±2,用式子表示是
=±2;⑤某數的絕對值,相反數,算術平方根都是它本身,則這個數是0,其中正確的是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com