【題目】如圖,在△ ABC中,∠ABC和∠ACB的平分線相交于點G,過點G作EF ∥BC交AB于E,交AC于F,過點G作GD⊥ AC于D,下列四個結論:①EF = BE+CF;②∠BGC= 90 °+∠A;③點G到△ ABC各邊的距離相等;④設GD =m,AE + AF =n,則S△AEF=
mn.其中正確的結論有( )
A.1 個B.2 個C.3 個D.4 個
【答案】D
【解析】
根據BG,CG分別是∠ABC和∠ACB的平分線,EF ∥BC,可得EB=EG,FG=FC,從而證得①正確;根據三角形內角和定理即可求出②正確;根據角平分線的性質可知點G是△ABC的內心,從而可得③正確;連接AG,結合點G是內心,即可表示出△AEG和△AFG的面積,從而可知④正確.
∵BG,CG分別是∠ABC和∠ACB的平分線,
∴∠EBG=∠GBC,∠FCG=∠GCB
∵EF ∥BC
∴∠EGB=∠GBC,∠FGC=∠GCB
∴∠EBG=∠EGB,∠FCG=∠FGC
∴EB=EG,FG=FC
∴EF = BE+CF
故①正確;
在△ABC中,∠A=180°-(∠ABC+∠ACB)
在△GBC中,,
即
所以②正確;
∵點G是∠ABC和∠ACB的平分線的交點,
∴點G是△ABC的內心
∴點G到△ABC各邊的距離相等
故③正確;
連接AG,
∵點G到△ABC各邊的距離相等,GD=m,AE+AF=n,
∴
故④正確;
綜上答案選D.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AE=CD,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連接AE,DE,DC.
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,在在△ABC中,已知∠BAC=900,AB=AC,點D在BC上,且BD=BA,點E在BC的延長線上,CE=CA,求∠DAE的度數;
(2)如果把(1)中的“AB=AC”條件去掉,其余條件不變,那么∠DAE的度數改變嗎?為什么?
(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900”其余條件不變,試探究∠DAE與∠BAC的數量關系式,試證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數y=k1x+b與反比例函數y=的圖象交于第一象限內的P(
,8),Q(4,m)兩點,與x軸交于A點.
(1)分別求出這兩個函數的表達式;
(2)直接寫出不等式k1x+b≥的解集;
(3)M為線段PQ上一點,且MN⊥x軸于N,求△MON的面積最大值及對應的M點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)【問題發現】
如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數量關系為
(2)【拓展研究】
在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BE,CE,AF,線段BE與AF的數量關系有無變化?請僅就圖2的情形給出證明;
(3)【問題發現】
當正方形CDEF旋轉到B,E,F三點共線時候,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數量關系,并證明之.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD位于直角坐標系中,AB=2,點D(0,1),以點C為頂點的拋物線y=ax2+bx+c經過x軸正半軸上的點A,B,CE⊥x軸于點E.
(1)求點A,B,C的坐標.
(2)將該拋物線向上平移m個單位恰好經過點D,且這時新拋物線交x軸于點M,N.
①求MN的長.
②點P是新拋物線對稱軸上一動點,將線段AP繞點A順時針旋轉60°得AQ,則OQ的最小值為 (直接寫出答案即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一批襯衫,平均每天可售出件,每件盈利
元.為了擴大銷售,增加盈利,商場決定采取適當的降價措施.經調查發現,在一定范圍內,襯衫的單價每下降
元,商場平均每天可多售出
件.
如果商場通過銷售這批襯衫每天獲利
元,那么襯衫的單價應下降多少元?
當每件襯衫的單價下降多少元時,每天通過銷售襯衫獲得的利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,長方形ABCD中,AB=4,BC=,點E是折線ADC上的一個動點(點E與點A不重合),點P是點A關于BE的對稱點.在點E運動的過程中,使△PCB為等腰三角形的點E的位置共有( 。
A.4個B.5個C.6個D.不能確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com