【題目】定義符號min{a,b}的含義為:當a≥b時min{a,b}=b;當a<b時min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是( )
A.
B.
C.1
D.0
【答案】A
【解析】解:在同一坐標系xOy中,畫出函數二次函數y=﹣x2+1與正比例函數y=﹣x的圖象,如圖所示.設它們交于點A、B. 令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 或
,
∴A( ,
),B(
,
).
觀察圖象可知:
① 當x≤ 時,min{﹣x2+1,﹣x}=﹣x2+1,函數值隨x的增大而增大,其最大值為
;
②當 <x<
時,min{﹣x2+1,﹣x}=﹣x,函數值隨x的增大而減小,其最大值為
;
③當x≥ 時,min{﹣x2+1,﹣x}=﹣x2+1,函數值隨x的增大而減小,最大值為
.
綜上所示,min{﹣x2+1,﹣x}的最大值是 .
故選:A.
理解min{a,b}的含義就是取二者中的較小值,畫出函數圖象草圖,利用函數圖象的性質可得結論.
科目:初中數學 來源: 題型:
【題目】某企業生成一種節能產品,投放市場供不應求.若該企業每月的產量保持在一定的范圍,每套產品的生產成本不高于50萬元,每套產品的售價不低于120萬元.已知這種產品的月產量x(套)與每套的售價y1(萬元)之間滿足關系式y1=190﹣2x.月產量x(套)與生成總成本y2(萬元)存在如圖所示的函數關系.
(1)直接寫出y2(2)與x之間的函數關系式;
(2)求月產量x的取值范圍;
(3)當月產量x(套)為多少時,這種產品的利潤W(萬元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結EF交CD于點G.若G是CD的中點,則BC的長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數;
(2)求證:AE是⊙O的切線;
(3)當BC=4時,求劣弧AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y= (x>0)的圖象與邊長為5的等邊△AOB的邊OA,AB分別相交于C,D兩點,若OC=2BD,則實數k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD與BE相交于點P,則∠BPD的度數為( )
A. 120° B. 125° C. 130° D. 155°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的 后得到線段CD,則點B的對應點D的坐標為( )
A.(3,3)
B.(1,4)
C.(3,1)
D.(4,1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發的時間t(分)之間的關系如圖所示,下列結論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有300米
其中正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論: ①△AED≌△DFB;②S四邊形BCDG= CG2;③若AF=2DF,則BG=6GF.
其中正確的結論( )
A.只有①②
B.只有①③
C.只有②③
D.①②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com