精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結果保留根號).

【答案】160;(2

【解析】試題分析

(1)由已知可判斷ABD是等腰直角三角形;

(2)過點ADC延長線的垂線,垂足為點F,則在RtAFC,求出FC的長,再求CD的長.

試題解析:

1)根據題意得:BDAE,

∴∠ADB=EAD=45°,

∵∠ABD=90°,

∴∠BAD=ADB=45°

BD=AB=60,

∴兩建筑物底部之間水平距離BD的長度為60米;

2)延長AE、DC交于點F,

根據題意得四邊形ABDF為正方形,

AF=BD=DF=60,

RtAFC中,∠FAC=30°,

CF=AFtanFAC=60×=20

又∵FD=60,

CD=60﹣20

∴建筑物CD的高度為(60﹣20)米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】綜合與實踐

問題情境

如圖,同學們用矩形紙片ABCD開展數學探究活動,其中AD=8,CD=6。

操作計算

(1)如圖(1),分別沿BE,DF剪去RtΔABE和RtΔCDF兩張紙片,如果剩余的紙片BEDF菱形,求AE的長;

圖(1) 圖(2) 圖(3)

操作探究

把矩形紙片ABCD沿對角線AC剪開,得到ΔABC和兩張紙片

(2)將兩張紙片如圖(2)擺放,點C和重合,點B,C,D在同一條直線上,連接,記的中點為M,連接BM,MD,發現ΔBMD是等腰三角形,請證明:

(3)如圖(3),將兩張紙片疊合在一起,然后將紙片繞點B順時針旋轉a(00<a<900),連接,探究并直接寫出線段的關系。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:在同一平面內畫兩條相交、有公共原點的數軸x軸和y軸,交角a90°,這樣就在平面上建立了一個斜角坐標系,其中w叫做坐標角,對于坐標平面內任意一點P,過Py軸和x軸的平行線,與x軸、y軸相交的點的坐標分別是ab,則稱點P的斜角坐標為(a,b).如圖,w=60°,點P的斜角坐標是(1,2),過點Px軸和y軸的垂線,垂足分別為M、N,則四邊形OMPN的面積是( )

A.B.C.D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們規定平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D定義點A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度

A1,0的距離跨度______________;

B-, 的距離跨度____________

C-3-2的距離跨度____________;

根據中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________

2如圖2,在平面直角坐標系xOy,圖形G2為以D-1,0為圓心2為半徑的圓,直線y=kx-1上存在到G2的距離跨度為2的點,k的取值范圍

3如圖3,在平面直角坐標系xOy,射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運動,若射線OP上存在點到E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖△ABC中,點D是邊AB的中點,CEAB,且AB=2CE,連結BE、CD。

1)求證:四邊形BECD是平行四邊形;

2)用無刻度的直尺畫出△ABCBC上的中線AG(保留畫圖痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖所示,OD平分BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°

1)求出∠AOB及其補角的度數;

2)求出∠DOC和∠AOE的度數,并判斷∠DOE 與∠AOB是否互補,并說明理由;

3)若∠BOC=α,∠AOC=β,則∠DOE 與∠AOB是否互補,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一只甲蟲在 5×5 的方格(每小格邊長為 1)上沿著網格線運動.它從 A處出發去看望 B、C、D 處的其它甲蟲,規定:向上向右走為正,向下向左走為負.如果從 A B 記為:AB+1,+4),從 B A 記為:BA(﹣1,﹣4),其中第一個數表示左右方向,第二個數表示上下方向,那么圖中

1AC , ),BC , ),CD , );

2)若這只甲蟲的行走路線為 ABCD,請計算該甲蟲走過的最少路程;

3)若這只甲蟲從 A 處去甲蟲 P 處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標出 P 的位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB=10,點C,D在線段AB上且AC=DB=2;P是線段CD上的動點,分別以AP,PB為邊在線段AB的同側作等邊AEP和等邊PFB,連接EF,設EF的中點為G;當點P從點C運動到點D時,則點G移動路徑的長是( ).

A.6B.5C.4D.3.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,ABC是等邊三角形四邊形BDEF是菱形,其中E=60°,將菱形BDEF繞點B按順時針方向旋轉,甲、乙兩位同學發現在此旋轉過程中有如下結論

線段AF與線段CD的長度總相等;

直線AF和直線CD所夾的銳角的度數不變;

那么,你認為( 。

A. 甲、乙都對 B. 乙對甲不對

C. 甲對乙不對 D. 甲、乙都不對

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视