【題目】綜合題。
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:CN∥AB.
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論CN∥AB還成立嗎?請說明理由.
【答案】
(1)
證明:
∵△ABC和△AMN都是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM+∠MAC=∠MAC+∠CAN,
∴∠BAM=∠CAN,
在△ABM和△ACN中,
∴△ABM≌△ACN(SAS),
∴∠ACN=∠ABM=60°,
∵∠ACB=60°
∴∠BCN+∠ABM=180°;
∴CN∥AB
(2)
證明:成立,
理由如下:
∵△ABC和△AMN都是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC+∠CAM=∠CAM+∠MAN,
∴∠BAM=∠CAN
在△ABM和△ACN中, ,
∴△ABM≌△ACN(SAS),
∴∠ACN=∠ABM=60°,
∵∠ACB=60°
∴∠BCN+∠ABM=180°;
∴CN∥AB
【解析】(1)利用等邊三角形的性質得出AB=AC,AM=AN,∠BAC=∠MAN,進而得出∠BAM=∠CAN,即可判斷出△ABM≌△ACN(SAS),得出∠ACN=∠ABM=60°,進而得出∠BCN+∠ABM=180°即可得出結論;(2)同(1)的方法即可得出結論.
【考點精析】解答此題的關鍵在于理解全等三角形的性質的相關知識,掌握全等三角形的對應邊相等; 全等三角形的對應角相等,以及對等邊三角形的性質的理解,了解等邊三角形的三個角都相等并且每個角都是60°.
科目:初中數學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=AB·AD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則∠DAB=_________.
(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(3)現有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?
圖1 圖2 圖3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝店以每件82元的價格購進了30套保暖內衣,銷售時,針對不同的顧客,這30套保暖內衣的售價不完全相同,若以100元為標準,將超過的錢數記為正,不足的錢數記為負,則記錄結果如表所示:
售出件數 | 7 | 6 | 7 | 8 | 2 |
售價(元) | +5 | +1 | 0 | ﹣2 | ﹣5 |
請你求出該服裝店在售完這30套保暖內衣后,共賺了多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC與△A′ B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為 _______。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD,BD分別平分∠CAB和∠CBA,相交于點D.
(1)如圖1,過點D作DE∥AC,DF∥BC分別交AB于點E、F. ①若∠EDF=80°,則∠C為多少?
②若∠EDF=x°,證明:∠ADB=(90+ )°.
(2)如圖2,若DE,BE分別平分∠ADB和∠ABD,且EF,BF分別平分∠BED和∠EBD,若∠BFE的度數是整數,求∠BFE至少是多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,兩個完全相同的含30°角的Rt△ABC和Rt△AED疊放在一起,BC交DE于點O,AB交DE于點G,BC交AE于點F,且∠DAB=30°,以下三個結論:①AF⊥BC;②△ADG≌△AFC;③O為BC的中點;④AG=BG.其中正確的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com