精英家教網 > 初中數學 > 題目詳情

已知⊙的圓心在坐標原點上,半徑為,點的坐標是(4,3),則點與⊙的位置關系是(    )

  A.在⊙O上                                                       B.在⊙O外

C.在⊙O內                           D.在⊙O上或⊙O內

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖①,已知拋物線y=ax2+bx+c經過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關于m的關系式;
(3)如圖②,以點A為圓心,以線段OA為半徑畫圓,交拋物線y=ax2+bx+c的對稱軸于點B,連接AB,若將拋物線向右平移m(m>0)個單位后,B點的對應點為B′,A點的對應點為A′點,且滿足四邊形BAA′B′為菱形,平移后的拋物線的對稱軸與菱形的對角線BA′交于點E,在x軸上是否存在一點F,使得以E、F、A′為頂點的三角形與△BAE相似?若存在,求出F點坐標;若不存在,說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點精英家教網P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,已知拋物線y= ax2+bx+ c經過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),

 

 

(1)求該拋物線的解析式;

(2)現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP

的面積為S,求S關于m的關系式;

(3)如圖②,以點A為圓心,以線段OA為半徑畫圓,交拋物線y = ax2+bx+ c的對稱軸于點B,連結AB,若將拋物線向右平移m(m>0)個單位后,B點的對應點為B′,A點的對應點為A′點,且滿足四邊形為菱形,平移后的拋物線的對稱軸與菱形的對角線BA′交于點E,在x軸上是否存在一點F,使得以E、F、A′為頂點的三角形與△BAE相似,若存在求出F點坐標,若不存在說明理由.

 

 

 

查看答案和解析>>

科目:初中數學 來源: 題型:

如,已知拋物線y = ax2+bx+ c經過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),

(1)求該拋物線的解析式;

(2)現將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關于m的關系式;

(3)如圖,以點A為圓心,以線段OA為半徑畫圓交拋物線y = ax2+bx+ c的對稱軸于點B,連結AB,

若將拋物線向右平移m(m>0)個單位后,B點的對應點為B′,A點的對應點為A′點,且滿足四邊形

為菱形,平移后的拋物線的對稱軸與菱形的對角線BA′交于點E,在x軸上是否存在一點F,

使得以E、F、A′為頂點的三角形與△BAE相似,若存在求出F點坐標,若不存在說明理由.

 

 

查看答案和解析>>

科目:初中數學 來源:2001年全國中考數學試題匯編《三角形》(04)(解析版) 題型:解答題

(2001•沈陽)已知,如圖,在直角坐標系中,以y軸上的點C為圓心,2為半徑的圓與x軸相切于原點O,點P在x軸的負半軸上,PA切⊙C于點A,AB為⊙C的直徑,PC交OA于點D.
(1)求證:PC⊥OA;
(2)若△APO為等邊三角形,求直線AB的解析式;
(3)若點P在x軸的負半軸上運動,原題的其他條件不變,設點P的坐標為(x,0),四邊形POCA的面積為S,求S與點P的橫坐標x之間的函數關系式,并寫出自變量的取值范圍;
(4)當點P在x軸的負半軸上運動時,原題的其他條件不變,分析并判斷是否存在這樣的一點P,使S四邊形POCA=S△AOB?若存在,請直接寫出點P的坐標;若不存在,請簡要說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视