精英家教網 > 初中數學 > 題目詳情

【題目】已知,如圖,在△ABC中,AC的垂直平分線與∠ABC的角平分線交于點D

1)如圖1,判斷∠BAD和∠BCD之間的數量關系,并說明理由;

2)如圖2,若∠DAC60°時,探究線段AB,BCBD之間的數量關系,并說明理由;

3)如圖3,在(2)的條件下,DACB的延長線交于點E,點FCD上一點且DFAE,連接AFBD于點G,若CE9,求DG的長.

【答案】1)∠BAD+∠BCD180°,見解析;(2BDAB+BC,見解析;(3.

【解析】

1)過點DDGBC于點G,DHBA于點H,根據HL可證明△ADH≌△CDG,可得∠HAD=∠DCG,得出∠BAD+∠BCD180°;

2)在BD上截取BFAB,證明△ABF為等邊三角形,△ADC為等邊三角形,再證明△ABC≌△AFD,可得出DFBC,則BDBF+DFAB+BC

3)延長FD至點M,使DMDF,證明△EAC≌△MDA,可得AMCE,∠MAD=∠ECA,可由DG得出結果.

1)∠BAD+∠BCD180°,理由如下:

如圖1,過點DDGBC于點G,DHBA于點H,

AC的垂直平分線與∠ABC角平分線的交于點D,

ADDC,∠ABD=∠DBC,

DHDG

RtADHRtCDGHL),

∴∠HAD=∠DCG

∵∠BAD+∠HAD180°,

∴∠BAD+∠DCG180°,

即∠BAD+∠BCD180°;

2BDAB+BC,理由如下:

如圖2,在BD上截取BFAB,連結AF

由(1)知∠BAD+∠BCD180°,

∴∠ABC+∠DAC180°,

∵∠DAC60°,

∴∠ABC120°,

∴∠ABD=∠DBC60°,

∴△ABF為等邊三角形,

ABAFBF,∠BAF60°,

ADDC

∴△ADC為等邊三角形,

ADAC,∠DAC60°,

∴∠DAF=∠BAC,

∴△ABC≌△AFDSAS),

DFBC,

BDBF+DFAB+BC

3)由(2)知∠DAC=∠DBC60°,如圖3,延長FD至點M,使DMDF,

∴∠ACB=∠ADB

DMDF,DFAE

DMAE

∵∠DAC=∠ADC60°,

∴∠ADM=∠EAC120°,

ACAD,

∴△EAC≌△MDASAS),

AMCE,∠MAD=∠ECA,

∴∠MAD=∠ADB,

DGAM,

DFDM

AGGF,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】解下列方程:

(1)2x(2x+5)=(x﹣1)(2x+5) (2)x2+2x﹣5=0.

(3)x2﹣4x﹣1=0 (用公式法) (4)2x2+1=3x(用配方法)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數量x(棵)之間存在如圖所示的函數關系.

1)求yx的函數關系式;

2)若在購買計劃中,B種苗的數量不超過35棵,但不少于A種苗的數量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:

b<0;4a+2b+c<0;a﹣b+c>0;(a+c)2<b2.其中正確的結論是

A①② B.①③ C.①③④ D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=AC,點E,F在邊BC上,BE=CF,點DAF的延長線上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。

A.5 cmB.4.8 cmC.4.6 cmD.4 cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABO的直徑,BCAB,連結OC,弦ADOC,直線CDBA的延長線于點E

1)求證:直線CDO的切線;

2)若DE=2BC,求ADOC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,延長BA至E,使AE=1,連接EC、ED,則sin∠CED=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從甲、乙、丙、丁4名同學中隨機抽取同學參加學校的座談會

(1)抽取一名同學, 恰好是甲的概率為

(2) 抽取兩名同學,求甲在其中的概率。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视