【題目】下列說法正確的是( )
A. 任何一個有理數的絕對值都是正數
B. 有理數可以分為正有理數和負有理數
C. 多頂式3πa3+4a2-8的次數是4
D. x的系數和次數都是1
科目:初中數學 來源: 題型:
【題目】觀察下列式子:
32﹣12=8=8×1;
52﹣32=16=8×2;
72﹣52=24=8×3;
92﹣72=32=8×4;
用公式將你所發現的規律用含n(n為正整數)的代數式表示出來 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連結AD、AG。
(1)求證:AD=AG
(2)AD與AG的位置關系如何,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個角的內部,點B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖③,點BC在∠MAN的邊AM、AN上,點EF在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .(12分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,二次函數的圖像過點 A (3,0),B (0,4)兩點,動點 P 從 A 出發,在線段 AB 上沿 A → B 的方向以每秒 2 個單位長度的速度運動,過點P作 PD⊥y 于點 D ,交拋物線于點 C .設運動時間為 t (秒).
(1)求二次函數的表達式;
(2)連接 BC ,當t=時,求△BCP的面積;
(3)如圖 2,動點 P 從 A 出發時,動點 Q 同時從 O 出發,在線段 OA 上沿 O→A 的方向以 1個單位長度的速度運動,當點 P 與 B 重合時,P 、 Q 兩點同時停止運動,連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運動過程中,設 △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數關系式及 t 的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com