【題目】如圖,AB是半徑為4的⊙O的直徑,P是圓上異于A,B的任意一點,∠APB的平分線交⊙O于點 C,連接AC和BC,△ABC的中位線所在的直線與⊙O相交于點E、F,則EF的長是________
科目:初中數學 來源: 題型:
【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級的哥哥想了一個辦法,他拿了八張撲克牌,將數字為1,2,3,5的四張牌給小麗,將數字為4,6,7,8的四張牌留給自己,并按如下游戲規則進行:小利哥哥從各自的四張牌中隨機抽出一張,然后將抽出的兩張撲克牌上的數字相加,如果和為偶數,和小麗去;如果和為奇數,則哥哥去.
(1)請用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;
(2)哥哥設計的游戲規則公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點,點A在點B的左側.
(1)求A,B兩點的坐標和此拋物線的對稱軸;
(2)設此拋物線的頂點為C,點D與點C關于x軸對稱,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形和四邊形
是兩個全等的矩形,其中
、
交于點
,
、
交于點
.
(1)判斷四邊形的形狀、并說明理由.
(2)若矩形的長是,寬是
,求四邊形
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:
在綜合實踐課上,張老師讓同學們以“矩形的折疊”為主題開展數學活動,張老師拿著一張矩形紙片ABCD,其中AB=acm, AD=bcm, 如圖1,先沿對角線BD折疊,點C落在點E的位置,BE交AD于點F.
操作發現:
(1)“奮進”小組發現與BF的長度一定相等的線段是哪一條;
(2)如圖2.“雄鷹”小組將圖1再折疊一次,使點D與點A重合,得到折痕GH,GH交AD于點M,發現△DGH是等腰三角形,請你證明這個結論;
實踐探究:
(3)“創新”小組將自己準備的矩形紙片按照(2)中“雄鷹”小組的作法操作,發現點E和點G重合,,如圖3,試探究“創新”小組準備的矩形紙片中a與b滿足的數量關系;
(4)”愛心”小組在其他小組的基礎上提出問題:當a與b滿足什么關系時,點G是DE的中點?請你直接出a與b滿足的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正△ABC的邊長為3cm,動點P從點A出發,以每秒1cm的速度,沿的方向運動,到達點C時停止,設運動時間為x(秒),
,則y關于x的函數的圖像大致為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個交點B的坐標;
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.
①當t為 秒時,△PAD的周長最?當t為 秒時,△PAD是以AD為腰的等腰三角形?(結果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為6的菱形ABCD中,動點M從點A出發,沿A→B→C向終點C運動,連接DM交AC于點N.
(1)如圖1,當點M在AB邊上時,連接BN
①試說明:;
②若∠ABC=60°,AM=4,求點M到AD的距離.
(2)如圖2,若∠ABC=90°,記點M運動所經過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】南沙群島是我國固有領土,現在我南海漁民要在南沙某海島附近進行捕魚作業,當漁船航行至B處時,測得該島位于正北方向10(1+)海里的C處,為了防止某國海巡警干擾,請求我A處的漁監船前往C處護航.如圖,已知C位于A處的東北方向上,A位于B的北偏西30°方向上,則A和C之間的距離為( 。
A. 10海里 B. 20
海里 C. 20
海里 D. 10
海里
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com