【題目】如圖,已知,EG∥AF,請你從下面三個條件中,再選出兩個作為已知條件,另一個作為結論,推出一個正確的命題.并證明這個命題(只寫出一種情況)①AB=AC ②DE=DF ③BE=CF
已知:EG∥AF, , .
求證: .
證明:
【答案】AB=AC;DE=DF;BE=CF;作EG∥AF交BC于G,
∴∠EGB=∠ACB,∠GED=∠CFD,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠EGB,
∴EB=EG,
在△EGD和△FCD中, ,
∴EG=CF,
∴BE=CF
【解析】已知:EG∥AF,AB=AC,DE=DF.求證:BE=CF.
證明:作EG∥AF交BC于G,
∴∠EGB=∠ACB,∠GED=∠CFD,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠EGB,
∴EB=EG,
在△EGD和△FCD中, ,
∴△EGD≌△FCD,
∴EG=CF,
∴BE=CF.
故答案為:AB=AC;DE=DF;BE=CF;作EG∥AF交BC于G,
∴∠EGB=∠ACB,∠GED=∠CFD,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠EGB,
∴EB=EG,
在△EGD和△FCD中, ,
∴EG=CF,
∴BE=CF
作EG∥AF交BC于G,根據平行線的性質得到∠EGB=∠ACB,∠GED=∠CFD,證明△EGD≌△FCD,根據全等三角形的性質解答即可.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( )cm2 .
A.72
B.90
C.108
D.144
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一個學生從點A向北偏東60°方向走40米,到達點B,再從B沿北偏西30°方向走若干米,到達點C,此時恰好在點A的正北方向,則下列說法正確的是( )
A. 點A到BC的距離為30米
B. 點B在點C的南偏東60°方向
C. 點A在點B的南偏西60°方向30米處
D. 以上都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A在數軸上對應的數為a,點B對應的數為b,且a、b滿足|a+3|+(b﹣2)2=0.
(1)求A、B兩點的對應的數a、b;
(2)點C在數軸上對應的數為x,且x是方程2x+1= x﹣8的解.
①求線段BC的長;
②在數軸上是否存在點P,使PA+PB=BC?求出點P對應的數;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com