【題目】如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作⊙O,交BD于點E,連接CE,過D作DF⊥AB于點F,∠BCD=2∠ABD.
(1)求證:AB是⊙O的切線;
(2)若∠A=60°,DF=,求⊙O的直徑BC的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由CD=CB,∠BCD=2∠ABD,可證得∠BCE=∠ABD,繼而求得∠ABC=90°,則可證得AB是⊙O的切線;
(2)由∠A=60°,DF=,可求得AF、BF的長,易證得△ADF∽△ACB,然后由相似三角形的對應邊成比例,求得答案.
試題解析:(1)證明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直徑,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB為直徑,∴AB是⊙O的切線;
(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF=
=
=1,AD=2.
∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴,設BC=x,則
,解得x=
,∴BC=
.
科目:初中數學 來源: 題型:
【題目】(操作發現】
在計算器上輸入一個正數,不斷地按“”鍵求算術平方根,運算結果越來越接近1或都等于1.
【提出問題】
輸入一個實數,不斷地進行“乘以常數k,再加上常數b”的運算,有什么規律?
【分析問題】
我們可用框圖表示這種運算過程(如圖a).
也可用圖象描述:如圖1,在x軸上表示出x1,先在直線y=kx+b上確定點(x1,y1),再在直線y=x上確定縱坐標為y1的點(x2,y1),然后再x軸上確定對應的數x2,…,以此類推.
【解決問題】
研究輸入實數x1時,隨著運算次數n的不斷增加,運算結果x,怎樣變化.
(1)若k=2,b=﹣4,得到什么結論?可以輸入特殊的數如3,4,5進行觀察研究;
(2)若k>1,又得到什么結論?請說明理由;
(3)①若,b=2,已在x軸上表示出x1(如圖2所示),請在x軸上表示x2,x3,x4,并寫出研究結論;
②若輸入實數x1時,運算結果xn互不相等,且越來越接近常數m,直接寫出k的取值范圍及m的值(用含k,b的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提高產品的附加值,某公司計劃將研發生產的1200件新產品進行精加工后再投放市場.現有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩間工廠了解情況,獲得如下信息: 信息一:甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用10天;
信息二:乙工廠每天加工的數量是甲工廠每天加工數量的1.5倍.
根據以上信息,求甲、乙兩個工廠每天分別能加工多少件新產品?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數的圖象上.若點B在反比例函數
的圖象上,則k的值為( )
A.﹣4 B.4 C.﹣2 D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.
(1)求∠CDE的度數;
(2)求證:DF是⊙O的切線;
(3)若AC=DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,點C為半徑OA的中點,過點C作CD⊥OA交弦AB于點E,連接BD,且DE=DB.
(1)判斷BD與⊙O的位置關系,并說明理由;
(2)若CD=15,BE=10,tanA=,求⊙O的直徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com