【題目】如圖中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點
若
,
,
,
,則BN的長度為
A. B.
C.
D.
【答案】D
【解析】
在Rt△ABC中,根據勾股定理可得:AB=,
由于四邊形DEFG為正方形,根據正方形的性質可得DE=EF=GF=DG=1,
∠DEG=∠GFE=90°,而∠B=90°,∠AED=∠B,∠DAE=∠CAB,根據相似三角形的判定定理可得:△ADE∽△ACB,根據相似三角形的性質可得;,即
,可AE=
,AF=AE+EF=
,
再根據∠GFA=∠B,∠GAF=∠NAB,利用相似三角形的判定定理可得△AGF∽△ANB,根據相似性質可得:,
,即可求出BN=
,
在Rt△ABC中,AB=,
∵四邊形DEFG為正方形,
∴DE=EF=GF=DG=1,∠DEG=∠GFE=90°,而∠B=90°,
∴∠AED=∠B,
∵∠DAE=∠CAB,
∴△ADE∽△ACB,
∴,
即,
∴AE=,
∴AF=AE+EF=,
∵∠GFA=∠B,∠GAF=∠NAB,
∴△AGF∽△ANB,
∴,
,
∴BN=,
故選D.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠A=50°,點D,E分別是邊AC,AB上的點(不與A,B,C重合),點P是平面內一動點(P與D,E不在同一直線上),設∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在邊BC上運動(不與點B和點C重合),如圖(1)所示,則∠1+∠2=________
(用α的代數式表示).
(2)若點P在ABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關系?寫出你的結論,并說明理由.
(3)當點P在邊CB的延長線上運動時,試畫出相應圖形,標注有關字母與數字,并寫出對應的∠α,∠1,∠2之間的關系式.(不需要證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與
軸交于點
,與正比例函數
的圖象相交于點
,且
.
(1)分別求出這兩個函數的解析式;
(2)求的面積;
(3)點在
軸上,且
是等腰三角形,請直接寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,AC=10,S△ABC =25,∠BAC的平分線交BC于點D,點M,N分別是AD和AB上的動點,則BM+MN的最小值是( )
A. 4 B. C. 5 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】口袋中裝有四個大小完全相同的小球,把它們分別標號1,2,3,4,從中隨機摸出一個球,記下數字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數和等于4的概率.
【答案】 .
【解析】試題分析:
根據題意列表如下,由表可以得到所有的等可能結果,再求出所有結果中,兩次所摸到小球的數字之和為4的次數,即可計算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數字之和等于4的有(3,1)、(2,2)和(1,3),共計3種,
∴P(兩次摸到小球的數字之和等于4)=.
【題型】解答題
【結束】
23
【題目】小亮同學想利用影長測量學校旗桿AB的高度,如圖,他在某一時刻立1米長的標桿測得其影長為1.2米,同時旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測得其長度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,軸,
軸,點
在x軸上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2)把一條長為2018個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A-B-D-E-F-G-H-P-A…的規律緊繞在圖形“凸”的邊上,則細線另一端所在位置的點的坐標是()
A.(1,1)B.(1,2)
C.(1,2)D.(1,0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com