【題目】在平面直角坐標系中,一次函數y=kx+b的圖象與x軸、y軸分別相交于A(﹣3,0),B(0,﹣3)兩點,二次函數y=x2+mx+n的圖象經過點A.
(1)求一次函數y=kx+b的解析式;
(2)若二次函數y=x2+mx+n圖象的頂點在直線AB上,求m,n的值;
(3)當﹣3≤x≤0時,二次函數y=x2+mx+n的最小值為﹣4,求m,n的值.
【答案】
(1)
解:A(﹣3,0),B(0,﹣3)代入y=kx+b得
,解得
,
∴一次函數y=kx+b的解析式為:y=﹣x﹣3
(2)
解:二次函數y=x2+mx+n圖象的頂點為(﹣ ,
)
∵頂點在直線AB上,
∴ =
﹣3,
又∵二次函數y=x2+mx+n的圖象經過點A(﹣3,0),
∴9﹣3m+n=0,
∴組成方程組為
解得 或
(3)
解:∵二次函數y=x2+mx+n的圖象經過點A.
∴9﹣3m+n=0,
∵當﹣3≤x≤0時,二次函數y=x2+mx+n的最小值為﹣4,
①如圖1,當對稱軸﹣3<﹣ <0時
最小值為 =﹣4,與9﹣3m+n=0,組成方程組為
解得
或
(由﹣3<﹣
<0知不符合題意舍去)
所以 .
②如圖2,當對稱軸﹣ >0時,在﹣3≤x≤0時,x為0時有最小值為﹣4,
把(0,﹣4)代入y=x2+mx+n得n=﹣4,
把n=﹣4代入9﹣3m+n=0,得m= .
∵﹣ >0,
∴m<0,
∴此種情況不成立,
③當對稱軸﹣ =0時,y=x2+mx+n的最小值為﹣4,
把(0,﹣4)代入y=x2+mx+n得n=﹣4,
把n=﹣4代入9﹣3m+n=0,得m= .
∵﹣ =0,
∴m=0,
∴此種情況不成立,
④當對稱軸﹣ ≤﹣3時,最小值為0,不成立
綜上所述m=2,n=﹣3.
【解析】(1)利用待定系數法求出解析式,(2)先表示出二次函數y=x2+mx+n圖象的頂點,利用直線AB列出式子,再與點A在二次函數上得到的式子組成方程組求得m,n的值,(3)本題要分四種情況①當對稱軸﹣3<﹣ <0時,②當對稱軸﹣
>0時,③當對稱軸﹣
=0時,④當對稱軸﹣
≤﹣3時,結合二次函數y=x2+mx+n的圖象經過點A得出的式子9﹣3m+n=0,求出m,n但一定要驗證是否符合題意.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,函數y1=﹣x+4的圖象與函數y2= (x>0)的圖象交于A(m,1),B(1,n)兩點.
(1)求k,m,n的值;
(2)利用圖象寫出當x≥1時,y1和y2的大小關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角△ABC中,∠C=90°,∠A、∠B與∠C的對邊分別是a、b和c,那么下列關系中,正確的是( )
A.cosA=
B.tanA=
C.sinA=
D.cosA=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數字為x,小張在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:“等角對等邊”).
已知:如圖, .
求證: .
(2)證明命題
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAC=60°,AC與BC交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC、AD于點F、G,連接OG,則下列結論中一定成立的是 . (把所有正確結論的序號都填在橫線上) ①OG= AB;
②與△EGD全等的三角形共有5個;
③S四邊形CDGF>S△ABF;
④由點A、B、D、E構成的四邊形是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】立定跳遠是小剛同學體育中考的選考項目之一.某次體育課上,體育老師記錄了小剛的一組立定跳遠訓練成績如下表:
成績(m) | 2.35 | 2.4 | 2.45 | 2.5 | 2.55 |
次數 | 1 | 1 | 2 | 5 | 1 |
則下列關于這組數據的說法中正確的是( )
A.眾數是2.45
B.平均數是2.45
C.中位數是2.5
D.方差是0.48
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一艘漁船位于港口A的北偏東60°方向,距離港口20海里B處,它沿北偏西37°方向航行至C處突然出現故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發20分鐘到達C處,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8, ≈1.732,結果取整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖示,若△ABC內一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數學家和數學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發現,但他的發現并未被當時的人們所注意,1875年,布洛卡點被一個數學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發現,并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=( )
A.5
B.4
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com