【題目】如圖,△ABC中,AB=AC,∠BAC=90°,BD⊥BC,CE⊥BC,∠DAE=45°,若BD=,CE=3
,則線段DE=_____.
【答案】10.
【解析】
將△ABD繞點A順時針旋轉90°得到△ACF,連接EF,則CF=BD=,AF=AD,∠CAF=∠BAD,易證∠DBC=∠ECB=90°,由等腰直角三角形的性質得出∠ABC=∠ACB=45°,推出∠ABD=∠ACF=∠ACE=135°,得出∠ECF=90°,由勾股定理得出EF=
=10,證明∠EAD=∠EAF,由SAS證得△EAF≌△EAD,即可得出結果.
將△ABD繞點A順時針旋轉90°得到△ACF,連接EF,如圖所示:
則CF=BD=,AF=AD,∠CAF=∠BAD,
∵BD⊥BC,EC⊥BC,
∴∠DBC=∠ECB=90°,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠ABD=∠ACF=∠ACE=135°,
∴∠ECF=90°,
在Rt△ECF中,EF==
=10,
∵∠DAE=45°,
∴∠EAF=∠EAC+∠CAF=∠EAC+∠BAD=45°,
∴∠EAD=∠EAF,
在△EAF和△EAD中,,
∴△EAF≌△EAD(SAS),
∴DE=EF=10,
故答案為:10.
科目:初中數學 來源: 題型:
【題目】某水果公司新購進10000千克柑橘,每千克柑橘的成本為9元. 柑橘在運輸、存儲過程中會有損壞,銷售人員從所有的柑橘中隨機抽取若干柑橘,進行“柑橘損壞率”統計,并把獲得的數據記錄如下:
柑橘總重量n/千克 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
損壞柑橘重量m/千克 | 5.50 | 10.50 | 15.15 | 19.42 | 24.25 | 30.93 | 35.32 | 39.24 | 44.57 | 51.54 |
柑橘損壞的頻率 | 0.110 | 0.105 | 0.101 | 0.097 | 0.097 | 0.103 | 0.101 | 0.098 | 0.099 | 0.103 |
根據以上數據,估計柑橘損壞的概率為 (結果保留小數點后一位);由此可知,去掉損壞的柑橘后,水果公司為了不虧本,完好柑橘每千克的售價至少為________元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
學習函數知識后,對于一些特殊的不等式,我們可以借助函數圖象來求出它的解集,例如求不等式x﹣3>的解集,我們可以在同一坐標系中,畫出直線y1=x﹣3與函數y2=
的圖象(如圖1),觀察圖象可知:它們交于點A(﹣1,﹣4),B(4,1).當﹣1<x<0,或x>4時,y1>y2,即不等式x﹣3>
的解集為﹣1<x<0,或x>4.
小東根據學習以上知識的經驗,對求不等式x3+3x2﹣x﹣3>0的解集進行了探究.下面是小東的探究過程,請補充完整:
(1)將不等式按條件進行轉化:當x=0時,原不等式不成立;x>0時,原不等式轉化為x2+3x﹣1>;當x<0時,原不等式轉化為______;
(2)構造函數,畫出圖象:設y3=x2+3x﹣1,y4=,在同一坐標系(圖2)中分別畫出這兩個函數的圖象.
(3)借助圖象,寫出解集:觀察所畫兩個函數的圖象,確定兩個函數圖象交點的橫坐標,結合(1)的討論結果,可知:不等式x3+3x2﹣x﹣3>0的解集為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD中,∠B=60°,點E在邊BC上,∠BAE=25°,把線段AE繞點A逆時針方向旋轉,使點E落在邊CD上,那么旋轉角的度數為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線(
)與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:
與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)直接寫出點A的坐標,并求直線l的函數表達式(其中k,b用含a的式子表示);
(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;
(3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2﹣mx﹣m﹣1與x軸交于A、B兩點,點A在點B的左邊,與y軸交于點C(0,﹣3).
(1)求點A、B的坐標;
(2)點D是拋物線上一點,且∠ACO+∠BCD=45°,求點D的坐標;
(3)將拋物線向上平移m個單位,交線段BC于點M,N,若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,點D、點E在BC邊上,且.
(1)求證:△ABD∽△CBA.
(2)若△ACE∽△BCA,判定△ADE的形狀,并說明理由;
(3)在(1)和(2)的條件下,若tan∠ADC=2,DE=6,請求出AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題:如圖1,△ABC中,AB=a,∠ACB=α.如何用直尺和圓規作出點P,均使得∠APB=α?(不需解答)
嘗試:如圖2,△ABC中,AC=BC,∠ACB=90°.
(1)請用直角三角尺(僅可畫直角或直線)在圖2中畫出一個點P,使得∠APB=45°
(2)如圖3,若AC=BC=,以點A為原點,直線AB為x軸,過點A垂直于AB的直線為y軸建立平面直角坐標系,直線y=
(b≥0)交x軸于點M,交y軸與點N.
①當b=7+時,請僅用圓規在射線MN上作出點P,使得∠APB=45°;
②請直接寫出射線MN上使得∠APB=45°或∠APB=135°時點P的個數及相應的b的取值范圍;
③應用:如圖4,△ABC中,AB=a,∠ACB=α,請用直尺和圓規作出點P,使得∠APB=α,且AP+BP最大,請簡要說明理由.(不寫作法,保留作圖痕跡)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com