【題目】已知二次函數y=ax2+b的圖象與直線y=x+2相交于點A(1,m),點B(n,0).
(1)求二次函數的解析式,并寫出該拋物線的對稱軸和頂點坐標;
(2)選取適當的數據填入下表,并在圖中的直角坐標系內描點畫出該拋物線的圖象;
x | …… |
|
|
|
|
| …… |
y | …… |
|
|
|
|
| …… |
(3)畫出這兩個函數的圖象,并結合圖象直接寫出ax2+b>x+2時x的取值范圍.
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,點M,N分別在射線OA,OB上(都不與點O重合),且∠MPN與∠AOB互補.若∠MPN繞著點P轉動,那么以下四個結論:①PM=PN恒成立;②MN的長不變;③OM+ON的值不變;④四邊形PMON的面積不變.其中正確的為_____.(填番號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.
(1)求拋物線的表達式;
(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.
①求S關于t的函數表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉60°得到線段OP,連接AP,反比例函數(k≠0)的圖象經過P,B兩點,則k的值為______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=75°,∠D=85°,則∠C= .
(2)已知:在“等對角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求對角線AC的長.
(3)已知:如圖2,在平面直角坐標系xOy中,四邊形ABCD是“等對角四邊形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣),點D在y軸上,拋物線y=ax2+bx+c(a<0)過點A、D,且當﹣2≤x≤2時,函數y=ax2+bx+c取最大值為3,求二次項系數a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AE是⊙O的直徑,AF是⊙O的弦,AF⊥BC,垂足為D.
(1)求證:∠BAE=∠CAD.
(2)若⊙O的半徑為4,AC=5,CD=2,求CF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com