精英家教網 > 初中數學 > 題目詳情
如圖所示,三角形ABC中,AB的垂直平分線DE交AC于點D,交AB于點E,如果AC=5,BC=4,則△BCD的周長是( 。
分析:根據線段垂直平分線得出AD=BD,推出CD+BD=4,即可求出答案.
解答:解:∵DE是BA的垂直平分線,
∴AD=DB,
∵AC=5,
∴AD+CD=5,
∴CD+BD=5,
∵BC=4,
∴△BCD的周長是CD+BD+BC=5+4=9,
故選D.
點評:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

12、如圖所示,三角形DEF平移得到三角形ABC,已知∠B=45°,∠C=65°,AB=2cm,則∠DFE=
65
度,DE=
2
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網某建筑工地需制作如圖所示的三角形支架.己知AB=AC=3m,BC=4m.俗話說“直木頂千斤”,為了增加該三角形支架的耐壓程度,需加固一根中柱AD,求中柱AD的長.(精確到0.1m).

查看答案和解析>>

科目:初中數學 來源: 題型:

某市在“舊城改造”中計劃在市內一塊如圖所示的三角形空地上種植某種草皮以美化環境,已知AC=30m,AB=20m,∠BAC=150°,這種每平方米的售價是a元,求購買這種草皮至少需要多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

(閱讀理解題)如圖所示,CE⊥AB于點E,BD⊥AC于點D,BD,CE交于點O,且AO平分∠BAC.
(1)圖中有多少對全等三角形?請一一列舉出來(不必說明理由);
(2)小明說:欲證BE=CD,可先證明△AOE≌△AOD得到AE=AD,再證明△ADB≌△AEC得到AB=AC,然后利用等式的性質得到BE=CD,請問他的說法正確嗎?如果正確,請按照他的說法寫出推導過程,如果不正確,請說明理由;
(3)要得到BE=CD,你還有其他思路嗎?若有,請寫出推理過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,三角形ABO繞點O旋轉得到三角形CDO,在這個旋轉過程中:
(1)旋轉中心是
點O
點O
,旋轉角是
∠AOC
∠AOC
∠BOD
∠BOD

(2)經過旋轉,點A、B分別轉到了
點C、D
點C、D

(3)如果AO=4cm,那么CO=
4cm
4cm
;
(4)如果AB=1cm,那么CD=
1cm
1cm
;
(5)如果∠AOC=60°,∠AOB=20°,那么∠BOD=
60°
60°
,∠COD=
20°
20°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视