施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系(如圖所示).
(1)求出這條拋物線的函數解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向等寬行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明;
(3)施工隊計劃在隧道門口搭建一個矩形“腳手架”CDAB,使A、D點在拋物線上.B、C點在地面OM線上(如圖所示).為了籌備材料,需求出“腳手架”三根鋼管AB、AD、DC的長度之和的最大值是多少,請你幫施工隊計算一下.
(1)y=-x2+2x(0≤x≤12);(2)不能;(3)15米
解析試題分析:(1)根據點P(6,6)為拋物線的頂點坐標可設這條拋物線的函數解析式為y=a(x-6)2+6,在根據圖象經過原點即可求得結果;
(2)把x=6-0.5-2.5=3(或x=6+0.5+2.5=9)代入(1)中的函數關系式計算,結果與5比較即可判斷.;
(3)設點A的坐標為(m,-m2+2m),即可得到OB=m,AB=DC=-
m2+2m,再根據拋物線的軸對稱可得OB=CM=m,從而可以得到BC=12-2m,即AD=12-2m,即可得到L關于x的函數關系式,最后根據二次函數的性質即可求得結果.
(1)∵M(12,0),P(6,6).
∴設這條拋物線的函數解析式為y=a(x-6)2+6,
∵把(0,0)代入解得a=-,
∴這條拋物線的函數解析式為y=-(x-6)2+6,
即y=-x2+2x(0≤x≤12);
(2)當x=6-0.5-2.5=3(或x=6+0.5+2.5=9)時,y=4.5<5
∴不能行駛寬2.5米、高5米的特種車輛;
(3)設點A的坐標為(m,-m2+2m),
∴OB=m,AB=DC=-m2+2m
根據拋物線的軸對稱可得OB=CM=m,
∴BC=12-2m,即AD=12-2m
∴L=AB+AD+DC=-m2+2m+12=-
(m-3)2+15
∴當m=3,即OB=3米時,三根木桿長度之和L的最大值為15米.
考點:二次函數的應用
點評:二次函數的應用是初中數學的重點和難點,是中考的熱點,尤其在壓軸題中極為常見,要特別注意.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012-2013學年江蘇阜寧第一學期期末學情調研九年級數學試卷 題型:解答題
施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現以O點為原點,OM所在直線為x軸建立直角坐標系(如圖1所示).
(1)求出這條拋物線的函數解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明;
(3)施工隊計劃在隧道門口搭建一個矩形“腳手架”CDAB,使A、D點在拋物線上。B、C點在地面OM線上(如圖2所示).為了籌備材料,需測算“腳手架”三根鋼桿AB、AD、DC的長度之和的最大值是多少,請你幫施工隊計算一下.
查看答案和解析>>
科目:初中數學 來源:2009年江蘇省中考數學模擬卷(2)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com