精英家教網 > 初中數學 > 題目詳情

【題目】二次函數y=ax2+bx+c(a、b、c為常數,且a≠0)中x與y的部分對應值如表:

x

﹣1

0

1

3

y

﹣1

3

5

3

①ac<0;
②當x>1時,y的值隨x值的增大而減;
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
上述結論中正確的個數是( )
A.4
B.3
C.2
D.1

【答案】B
【解析】解:∵x=﹣1時y=﹣1,x=0時,y=3,x=1時,y=5,

,

解得 ,

∴y=﹣x2+3x+3,

∴ac=﹣1×3=﹣3<0,故①正確;

對稱軸為直線x=﹣ = ,

所以,當x> 時,y的值隨x值的增大而減小,故②錯誤;

方程為﹣x2+2x+3=0,

整理得,x2﹣2x﹣3=0,

解得x1=﹣1,x2=3,

所以,3是方程ax2+(b﹣1)x+c=0的一個根,正確,故③正確;

﹣1<x<3時,ax2+(b﹣1)x+c>0正確,故④正確;

綜上所述,結論正確的是①③④.

所以答案是:B.

【考點精析】利用二次函數圖象以及系數a、b、c的關系和拋物線與坐標軸的交點對題目進行判斷即可得到答案,需要熟知二次函數y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c);一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數量關系,并證明你的結論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側的墻上時,梯子的頂端在B點,當它靠在另一側的墻上時,梯子的頂端在D點,已知∠BAC60°,點B到地面的垂直距離BC5米,DE6米.

1)求梯子的長度;

2)求兩面墻之間的距離CE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商貿公司有、兩種型號的商品需運出,這兩種商品的體積和質量分別如下表所示:

體積(立方米/件)

質量(噸/件)

型商品

08

05

型商品

2

1

1)已知一批商品有兩種型號,體積一共是20立方米,質量一共是105噸,求、兩種型號商品各有幾件?

2)物資公司現有可供使用的貨車每輛額定載重35噸,容積為6立方米,其收費方式有以下兩種:

車收費:每輛車運輸貨物到目的地收費600元;

②按噸收費:每噸貨物運輸到目的地收費200元.

現要將(1)中商品一次或分批運輸到目的地,如果兩種收費方式可混合使用,商貿公司應如何選擇運送、付費方式,使其所花運費最少,最少運費是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置.此時AC′的中點恰好與點D重合,AB′交CD于點E,若AB=3,則△AEC的面積為( )

A.3
B.
C.2
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一個多位自然數的任意兩個相鄰數位上,右邊數位上的數總比左邊數位上的數大1,則我們稱這樣的自然數叫“美數”,例如:123,345667,…都是“美數”.

1)若某個三位“美數”恰好等于其個位的76倍,這個“美數”為   

2)證明:任意一個四位“美數”減去任意一個兩位“美數”之差再減去1得到的結果定能被11整除;

3)如果一個多位自然數的任意兩個相鄰數位上,左邊數位上的數總比右邊數位上的數大1,則我們稱這樣的自然數叫“妙數”,若任意一個十位為為整數)的兩位“妙數”和任意一個個位為為整數)的兩位“美數”之和為55,則稱兩位數為“美妙數”,并把這個“美妙數”記為,則求的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將一矩形紙片OABC放在直角坐標系中,O為原點,C在x軸上,OA=6,OC=10.
(Ⅰ)如圖①,在OA上取一點E,將△EOC沿EC折疊,使點O落在AB邊上的D點,求E點的坐標;
(Ⅱ)如圖②,在OA、OC邊上選取適當的點E′、F,將△E′OF沿E′F折疊,使O點落在AB邊上D′點,過D′作D′G∥OA交E′F于T點,交OC于G點,設T的坐標為(x,y),求y與x之間的函數關系式,并直接寫出自變量x的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若OG=2 ,求△D′TF的面積.(直接寫出結果即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、b 、cRtABCRtBED 的邊長,已知,這時我們把關于 x 的形如二次方程稱為勾系一元二次方程

請解決下列問題:

(1)寫出一個勾系一元二次方程

(2)求證:關于 x勾系一元二次方程,必有實數根;

(3)若 x 1勾系一元二次方程的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC是腰長為1的等腰直角三形,以RtABC的斜邊AC為直角邊,畫第二個等腰RtACD,再以RtACD的斜邊AD為直角邊,畫第三個等腰RtADE,,依此類推,則第2018個等腰直角三角形的斜邊長是______

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视