【題目】.如圖,折疊矩形的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,求EC的長.
【答案】3cm
【解析】
試題分析:根據矩形的性質得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根據折疊的性質得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理計算出BF=6,則FC=4,設EC=x,則DE=EF=8﹣x,在Rt△EFC中,根據勾股定理得x2+42=(8﹣x)2,然后解方程即可.
試題解析:∵四邊形ABCD為矩形, ∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,
∵折疊矩形的一邊AD,使點D落在BC邊的點F處 ∴AF=AD=10,DE=EF,
在Rt△ABF中,BF==
=6, ∴FC=BC﹣BF=4,
設EC=x,則DE=8﹣x,EF=8﹣x, 在Rt△EFC中, ∵EC2+FC2=EF2,
∴x2+42=(8﹣x)2,解得x=3, ∴EC的長為3cm.
科目:初中數學 來源: 題型:
【題目】下列命題中,是真命題的是
A. 兩條對角線互相平分的四邊形是平行四邊形
B. 兩條對角線相等的四邊形是矩形
C. 兩條對角線互相垂直的四邊形是菱形
D. 兩條對角線互相垂直且相等的四邊形是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=6cm,現有一動點P從A出發以2cm/秒的速度,沿矩形的邊A—B—C—D回到點A,設點P的運動時間為t秒。
(1)當t=3秒時,求△ABP的面積;
(2)當t為何值時,點P與點A的距離為5cm?
(3)當t為何值時(2<t<5),以線段AD、CP、AP的長度為三角形是直角三角形,且AP是斜邊。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com