精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經過點C,過點C作直線MN,使∠BCM=2∠A

1)判斷直線MN⊙O的位置關系,并說明理由;

2)若OA=4∠BCM=60°,求圖中陰影部分的面積.

【答案】1)相切;(2

【解析】試題分析:(1MN⊙O切線,只要證明∠OCM=90°即可.(2)求出∠AOC以及BC,根據S=S扇形OAC﹣SOAC計算即可.

試題解析:(1MN⊙O切線.

理由:連接OC

∵OA=OC,

∴∠OAC=∠OCA,

∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,

∴∠BCM=∠BOC,

∵∠B=90°

∴∠BOC+∠BCO=90°,

∴∠BCM+∠BCO=90°,

∴OC⊥MN,

∴MN⊙O切線.

2)由(1)可知∠BOC=∠BCM=60°,

∴∠AOC=120°,

RT△BCO中,OC=OA=4,∠BCO=30°

∴BO=OC=2,BC=2

∴S=S扇形OAC﹣SOAC=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )

A. A=∠D,∠B=∠E,∠C=∠FB. ABDEBCEF,∠A=∠D

C. B=∠E90°,BCEF,ACDFD. A=∠DABDF,∠B=∠E

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點,點EBC邊上,且BE=BD,連結AE、DE、DC
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,將∠ABC繞點A按逆時針方向旋轉一定角度后,BC的對應邊B'C'CD邊于點G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則

=__(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正比例函數和反比例函數的圖象都經過點A(﹣3,﹣3).

(1)求正比例函數和反比例函數的表達式;

(2)把直線OA向上平移后與反比例函數的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達式;

(3)在(2)的條件下,直線BCy軸交于點D,求以點A,B,D為頂點的三角形的面積;

(4)在(3)的條件下,點A,B,D在二次函數的圖象上,試判斷該二次函數在第三象限內的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2011內蒙古赤峰,73分)早晨,小張去公園晨練,下圖是他離家的距離y(

)與時間t(分鐘)的函數圖象,根據圖象信息,下列說法正確的是 ( )

A.小張去時所用的時間多于回家所用的時間B.小張在公園鍛煉了20分鐘

C.小張去時的速度大于回家的速度 D.小張去時走上坡路,回家時走下坡路

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸的負半軸、y軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉,使點B落在y軸上,得到矩形ODEF,BC與OD相交于點M.若經過點M的反比例函數y=(x0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tanDOE=,,則BN的長為______________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°,

1)若BDACD,求∠ABD的度數;

2)若CE平分∠ACB,求證:AE=BC

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视