【題目】探索三角形的內角與外角平分線(三角形的外角是三角形的一邊與另一邊的延長線所組成的角):
(1)如圖①,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,則∠BOC=________;此時∠A與∠BOC有怎樣的關系?試說明理由.
(2)如圖②,BO平分∠ABC,CO平分∠ACE,若∠A=50°,則∠BOC=________;此時∠A與∠BOC有怎樣的關系?試說明理由.
(3)如圖③,△ABC的外角∠CBE,∠BCF的平分線BO,CO相交于點O,若∠A=50°,則∠BOC=______;此時∠A與∠BOC有怎樣的關系?(不需說明理由)
【答案】(1)115°,∠BOC=90°+∠A,.理由見解析;(2)25°,∠BOC=
∠A,理由見解析;(3)65°,∠BOC=90°-
∠A.
【解析】
(1)根據三角形內角和定理得到∠BOC=180°-∠OBC-∠OCB,則2∠BOC=360°-2∠OBC-2∠OCB,再根據角平分線的定義得∠ABC=2∠OBC,∠ACB=2∠OCB,則2∠BOC=360°-∠ABC-∠ACB,易得∠BOC=90°+∠A.
(2)根據角平分線的定義得∠ACE=2∠OCE,∠ABC=2∠OBC,由三角形外角的性質有∠OCE=∠BOC+∠OBC,∠ACE=∠ABC+∠A,則2∠BOC+2∠OBC=∠ABC+∠A,即可得到∠BOC=∠A;
(3)根據三角形內角和定理和外角性質可得到∠BOC=90°-∠A.
(1)115° ∠BOC=90°+∠A.理由如下:
∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB.
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB).
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+∠A.
(2)25° ∠BOC=∠A.理由如下:
∵CO平分∠ACE,
∴∠ACE=2∠OCE.
∵∠OCE=∠OBC+∠BOC,
∠ACE=∠ABC+∠A,
∴∠ABC+∠A=2∠OBC+2∠BOC.
∵BO平分∠ABC,∴∠ABC=2∠OBC,
∴2∠OBC+∠A=2∠OBC+2∠BOC,
∴∠A=2∠BOC,即∠BOC=∠A.
(3)65° ∠BOC=90°-∠A.
科目:初中數學 來源: 題型:
【題目】為響應珠海環保城市建設,我市某污水處理公司不斷改進污水處理設備,新設備每小時處理污水量是原系統的1.5倍,原來處理1200m3污水所用的時間比現在多用10小時.
(1)原來每小時處理污水量是多少m2?
(2)若用新設備處理污水960m3,需要多長時間?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,CD為AB邊上的高
(1) 如圖1,求證:∠BAC=2∠BCD
(2) 如圖2,∠ACD的平分線CE交AB于E,過E作EF⊥BC于F,EF與CD交于點G.若ED=m,BD=n,請用含有m、n的代數式表示△EGC的面積
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過A點的一次函數的圖象與正比例函數y=2x的圖象相交于點B.
(1)求一次函數的解析式;
(2)判斷點C(4,-2)是否在該一次函數的圖象上,說明理由;
(3)若該一次函數的圖象與x軸交于D點,求△BOD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知A( ,y1),B(2,y2)為反比例函數y=
圖象上的兩點,動點P(x,0)在x軸正半軸上運動,當線段AP與線段BP之差達到最大時,點P的坐標是( )
A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個三角形按圖①方式擺放,使點E落在AB上,DE的延長線交BC于點F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長線于點F(如圖②),則(1)中的結論還成立嗎?若成立,加以證明;若不成立,寫出此時BF、EF與DE之間的等量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:E 是∠AOB 的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接 CD,且交 OE 于點F.
(1)求證:OD=OC;
(2)求證:OE 是 CD 的垂直平分線;
(3)若∠AOB=60°,請你探究 OE,EF 之間有什么數量關系?并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)(﹣12a2b2c)(﹣abc2)2=___________;
(2)(3a2b﹣4ab2﹣5ab﹣1)(﹣2ab2)=___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com