【題目】如圖,已知AB∥CD,分別探究下面兩個圖形中∠APC和∠PAB、∠PCD的關系,請從你所得兩個關系中選出任意一個,說明你探究的結論的正確性.
結論:(1)
(2)
選擇結論: ,說明理由.
【答案】(1) ∠APC+∠PAB+∠PCD=360°(2)∠APC = ∠PAB+∠PCD;(2)
【解析】試題分析:(1)首先過點P作PQ∥AB,又由AB∥CD,可得PQ∥AB∥CD,根據兩直線平行,同旁內角互補,即可求得∠PAB+∠1=180°,∠2+∠PCD=180°,則可得∠APC+∠PAB+∠PCD=∠PBA+∠1+∠2+∠PCD=360°;
(2)首先過點P作PQ∥AB,又由AB∥CD,可得PQ∥AB∥CD,根據兩直線平行,內錯角相等,即可得∠1=∠PAB,∠2=∠PCD,則可得∠APC=∠PAB+∠PCD.
試題解析:(1)∠APC+∠PAB+∠PCD=360°.理由如下:
過點P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠PAB+∠1=180°,∠2+∠PCD=180°,
∵∠APC=∠1+∠2,
∴∠APC+∠PAB+∠PCD=∠PAB+∠1+∠2+∠PCD=360°;
(2)∠APC=∠PAB+∠PCD.理由如下:
過點P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠1=∠PAB,∠2=∠PCD,
∵∠APC=∠1+∠2=∠PAB+∠PCD,
∴∠APC=∠PAB+∠PCD.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC長為( )
A.8
B.10
C.12
D.14
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①當點D在AC上時,如圖1,線段BD、CE有怎樣的數量關系和位置關系?寫出你猜想的結論,并說明理由;
②將圖1中的△ADE繞點A順時針旋轉α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數量關系和位置關系?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB和直線CD,直線BE和直線CF都被直線BC所截,在下面三個式子只,請你選擇其中兩個作為題設,剩下的一個作為結論,組成一個真命題并寫出對應的推理過程
題設
已知
;______
結論求證
:______
理由:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC.
(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;
(2)動點P從點O出發,沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發,沿BC以每秒1個單位長度的速度向點C運動.規定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P1、P2是反比例函數y= (k>0)在第一象限圖象上的兩點,點A1的坐標為(4,0).若△P1OA1與△P2A1A2均為等腰直角三角形,其中點P1、P2為直角頂點.
(1)求反比例函數的解析式.
(2)①求P2的坐標. ②根據圖象直接寫出在第一象限內當x滿足什么條件時,經過點P1、P2的一次函數的函數值大于反比例函數y= 的函數值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點,且AD∥CO,連結CD
(1)求證:CD是⊙O的切線;
(2)若AB=2,CD= ,求AD的長.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD中,點E、F分別是邊AD、AB的中點,連接EF.
(1)如圖1,若點G是邊BC的中點,連接FG,則EF與FG關系為: ;
(2)如圖2,若點P為BC延長線上一動點,連接FP,將線段FP以點F為旋轉中心,逆時針旋轉900,得到線段FQ,連接EQ,請猜想EF、EQ、BP三者之間的數量關系,并證明你的結論;
(3)若點P為CB延長線上一動點,按照(2)中的作法,在圖3中補全圖形,并直接寫出EF、EQ、BP三者之間的數量關系: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com