精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知正方形ABCD邊長為1,∠EAF=45°,AE=AF,則有下列結論:
①∠1=∠2=22.5°;
②點C到EF的距離是 -1;
③△ECF的周長為2;
④BE+DF>EF.
其中正確的結論是 . (寫出所有正確結論的序號)

【答案】①②③
【解析】解:∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=∠B=∠D=90°,
在Rt△ABE和Rt△ADF中

∴Rt△ABE≌Rt△ADF,
∴∠1=∠2,
∵∠EAF=45°,
∴∠1=∠2=∠22.5°,所以①正確;
連結EF、AC,它們相交于點H,如圖,
∵Rt△ABE≌Rt△ADF,
∴BE=DF,
而BC=DC,
∴CE=CF,
而AE=AF,
∴AC垂直平分EF,AH平分∠EAF,
∴EB=EH,FD=FH,
∴BE+DF=EH+HF=EF,所以④錯誤;
∴△ECF的周長=CE+CF+EF=CED+BE+CF+DF=CB+CD=1+1=2,所以③正確;
設BE=x,則EF=2x,CE=1﹣x,
∵△CEF為等腰直角三角形,
∴EF= CE,即2x= (1﹣x),解得x= ﹣1,
∴EF=2( ﹣1),
∴CH= EF= ﹣1,所以②正確.
故答案為①②③.

先證明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可對①進行判斷;連結EF、AC,它們相交于點H,如圖,利用Rt△ABE≌Rt△ADF得到BE=DF,則CE=CF,接著判斷AC垂直平分EF,AH平分∠EAF,于是利用角平分線的性質定理得到EB=EH,FD=FH,則可對③④進行判斷;設BE=x,則EF=2x,CE=1﹣x,利用等腰直角三角形的性質得到2x= (1﹣x),解得x= ﹣1,則可對④進行判斷.本題考查了四邊形的綜合題:熟練掌握正方形的性質和角平分線的性質定理.解決本題的關鍵是證明AC垂直平分EF.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=x2+bx+c的圖象與y軸交于點C(0,﹣6),與x軸的一個交點坐標是A(﹣2,0).

(1)求二次函數的解析式,并寫出頂點D的坐標;
(2)將二次函數的圖象沿x軸向左平移 個單位長度,當 y<0時,求x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC,∠BAC=45°,AB=8,要使滿足條件的△ABC唯一確定,那么BC邊長度x的取值范圍為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.

(1)問線段ECBF數量關系和位置關系?并給予證明.

(2)連AM,請問∠AME的大小是多少,如能求寫出過程;不能求,寫出理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.

應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解學校圖書館上個月借閱情況,管理老師從學生對藝術、經濟、科普及生活四類圖書借閱情況進行了統計,并繪制了下列不完整的統計圖,請根據圖中信息解答下列問題:

(1)上個月借閱圖書的學生有多少人?扇形統計圖中“藝術”部分的圓心角度數是多少?
(2)把條形統計圖補充完整;
(3)從借閱情況分析,如果要添置這四類圖書300冊,請你估算“科普”類圖書應添置多少冊合適?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】三張背面完全相同的數字牌,它們的正面分別印有數字“1”、“2”、“3”,將它們背面朝上,洗勻后隨機抽取一張,記錄牌上的數字并把牌放回,再重復這樣的步驟兩次,得到三個數字a、b、c,則以a、b、c為邊長正好構成等邊三角形的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,E為CD的中點,H為BE上的一點, ,連接CH并延長交AB于點G,連接GE并延長交AD的延長線于點F.

(1)求證:
(2)若∠CGF=90°,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=120°,AB的垂直平分線交BCM,交ABE,AC的垂直平分線交BCN,交ACF,若MN=2,則AB(  )

A. B. 3 C. 2 D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视