【題目】在一次數學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉盤做游戲(每個轉盤被分成面積相等的幾個扇形,并在每個扇形區域內標上數字).游戲規則如下:兩人分別同時轉運甲、乙轉盤,轉盤停止后,若指針所指區域內兩數和小于12,則李燕獲勝;若指針所指區域內兩數和等于12,則為平局;若指針所指區域內兩數和大于12,則劉凱獲勝(若指針停在等分線上,重轉一次,直到指針指向某一份內為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數和的所有可能的結果;
(2)分別求出李燕和劉凱獲勝的概率.
科目:初中數學 來源: 題型:
【題目】商場進了一批家用空氣凈化器,成本為1200元/臺.經調查發現,這種空氣凈化器每周的銷售量y(臺)與售價x(元/臺)之間的關系如圖所示:
(1)請寫出這種空氣凈化器每周的銷售量y與 售價x的函數關系式(不寫自變量的范圍);
(2)若空氣凈化器每周的銷售利潤為W(元),則當售價為多少時,可獲得最大利潤,此時的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把多塊大小不同的30°直角三角板如圖所示,擺放在平面直角坐標系中,第一塊三角板AOB的一條直角邊與y軸重合且點A的坐標為(0,1),∠ABO=30°;第二塊三角板的斜邊BB1與第一塊三角板的斜邊AB垂直且交y軸于點B1;第三塊三角板的斜邊B1B2與第二塊三角板的斜邊BB1垂直且交x軸于點B2;第四塊三角板的斜邊B2B3與第三塊三角板的斜邊B1B2C垂直且交y軸于點B3;…按此規律繼續下去,則點B2017的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)設OE交⊙O于點F,若DF=1,BC=2 ,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當點P是線段BC的中點時,求點P的坐標;
(3)在(2)的條件下,求sin∠OCB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+4的圖象與x軸交于點B(﹣2,0),點C(8,0),與y軸交于點A.
(1)求二次函數y=ax2+bx+4的表達式;
(2)連接AC,AB,若點N在線段BC上運動(不與點B,C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求N點的坐標;
(3)連接OM,在(2)的結論下,求OM與AC的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以下說法: ①關于x的方程x+ =c+
的解是x=c(c≠0);
②方程組 的正整數解有2組;
③已知關于x,y的方程組 ,其中﹣3≤a≤1,當a=1時,方程組的解也是方程x+y=4﹣a的解;
其中正確的有( )
A.②③
B.①②
C.①③
D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com