桌面上放有3張卡片,正面分別標有數字2,3,4,這些卡片除數字外完全相同,把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數字,不放回,乙從剩下的牌中任意抽出一張,記下卡片上的數字,然后將這兩數相加
(1)請用列表或畫樹狀圖的方法求兩數和為5的概率;
(2)若甲與乙按上述方式作游戲,當兩數之和為5時,甲得3分;反之則乙得1分;這個游戲對雙方公平嗎?請說明理由.如果不公平,請你修改得分方案,使游戲公平.
分析:游戲是否公平,關鍵要看游戲雙方取勝的機會是否相等,即判斷雙方取勝的概率是否相等,或轉化為在總情況明確的情況下,判斷雙方取勝所包含的情況數目是否相等.
解答:解:(1)畫樹狀圖如下:

列表如下:
和 |
2 |
3 |
4 |
2 |
無 |
5 |
6 |
3 |
5 |
無 |
無 |
4 |
6 |
7 |
無 |
(2分)
由圖(表)可知:所有可能出現的結果有6種,其中和為5的結果有2種.
∴P(和為5)=
=(2分)
(2)這個游戲對雙方不公平.因為兩數和為5的概率與其余的概率之比為1:2,而甲乙得分之比卻為3:1,這對乙不公平.(2分)修改方案是:若甲與乙按上述方式作游戲,當兩數之和為5時,甲得2分;反之則乙得1分.(2分)
點評:本題考查的是游戲公平性的判斷.判斷游戲公平性就要用樹狀圖或列表法計算每個事件的概率,比較兩者的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數與總情況數之比.