【題目】如圖,BN是等腰Rt△ABC的外角∠CBM內部的一條射線,∠ABC=90°,AB=CB,點C關于BN的對稱點為D,連接AD,BD,CD,其中CD,AD分別交射線BN于點E,P.
(1)依題意補全圖形;
(2)若∠CBN=,求∠BDA的大。ㄓ煤
的式子表示);
(3)用等式表示線段PB,PA與PE之間的數量關系,并證明.
【答案】(1)補圖見解析;(2)45°-;(3)PA=
(PB+PE)..
【解析】
此題涉及的知識點是對稱點的畫法,角大小的求解,數量關系的證明,解答時第一問根據已知條件直接畫圖,連線;第二問根據對稱圖形性質可以算出角的大。坏谌龁栕C明兩三角形全等就可以得到線段之間的關系。
解:(1) 如圖所示:
(2)∵∠ABC=90°
∴∠MBC=∠ABC=90°
∵點C關于BN的對稱點為D
∴BC=BD,∠CBN=∠DBN=
∵AB=BC
∴AB=BD
∴∠BAD=∠ADB==45°-
(3)猜想:
證明:
過點B作BQ⊥BE交AD于Q
∵∠BPA=∠DBN+∠ADB,∠ADB=45°-,∠DBN=
∴∠BPA=∠DPE=45°
∵點C關于BN的對稱點為D
∴BE⊥CD
∴PD=PE,PQ=
PB,
∵BQ⊥BE,∠BPA=45°
∴∠BPA=∠BQP=45°
∴∠AQB=∠DPB=135°
又∵AB=BD,∠BAD=∠ADB
∴△AQB≌△BPD(AAS)
∴AQ=PD
∵PA=AQ+PQ
∴
科目:初中數學 來源: 題型:
【題目】某工廠生產一種產品,當生產數量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產數量x(噸)的函數關系的圖象如圖所示.
(1)求y關于x的函數解析式,并寫出x的取值范圍;
(2)當生產這種產品每噸的成本為7萬元時,求該產品的生產數量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,拋物線( a≠0)經過原點,頂點為A(h,k)(h≠0).
(1)當h=1,k=2時,求拋物線的解析式;
(2)若拋物線(t≠0)也經過A點,求a與t之間的關系式;
(3)當點A在拋物線上,且-2≤h<1時,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是中國古代張蒼、耿壽昌所撰寫的一部數學專著 .是《算經十書》中最重要的一部,成于公元一世紀左右 .全書總結了戰國、秦、漢時期的數學成就 .同時,《九章算術》在數學上還有其獨到的成就,不僅最早提到分數問題,也首先記錄了盈不足等問題,其中有一個數學問題“今有垣厚一丈,兩鼠對穿 .大鼠日一尺,小鼠亦一尺 .大鼠日自倍,小鼠日自半 .問:何日相逢?”.譯文:“有一堵一丈(舊制長度單位,1丈=10尺=100寸)厚的墻,兩只老鼠從兩邊向中間打洞 .大老鼠第一天打一尺,小老鼠也是一尺 .大老鼠每天的打洞進度是前一天的一倍,小老鼠每天的進度是前一天的一半 .問它們幾天可以相逢?”請你用所學數學知識方法給出答案:______________ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請按照研究問題的步驟依次完成任務.
(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”, 請說理證明∠A+∠B=∠C+∠D.
(簡單應用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(可直接使用問題(1)中的結論)
(問題探究)
(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度數為 ;
(拓展延伸)
(4)在圖4中,若設∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=
∠CDB,試問∠P與∠C、∠B之間的數量關系為 (用x、y表示∠P) ;
(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關系,直接寫出結論 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=5cm,∠ADC=120°,點E、F同時由A、C兩點出發,分別沿AB.CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經過t秒△DEF為等邊三角形,則t的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】又到了一年中的春游季節,某班學生利用周末到白塔山去參觀“晏陽初博物館”.下面是兩位同學的一段對話:
甲:我站在此處看塔頂仰角為60°;
乙:我站在此處看塔頂仰角為30°;
甲:我們的身高都是1.5m;
乙:我們相距20m.
請你根據兩位同學的對話,計算白塔的高度.(精確到1米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點P以每秒一個單位的速度沿著B﹣C﹣A運動,⊙P始終與AB相切,設點P運動的時間為t,⊙P的面積為y,則y與t之間的函數關系圖象大致是( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數,而無理數是無限不循環小數,因此
的小數部分我們不可能全部地寫出來,但是由于1<
<2,所以
的整數部分為1,將
減去其整數部分1,差就是小數部分
,根據以上的內容,解答下面的問題:
(1)的整數部分是______,小數部分是______;
(2)的整數部分是______,小數部分是_____;
(3)若設整數部分是x,小數部分是y,求x﹣
y的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com