【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點M在⊙O上,MD恰好經過圓心O,連接MB.
(1)若CD=16,BE=4,求⊙O的直徑;
(2)若∠M=∠D,求∠D的度數.
【答案】
(1)解:∵AB⊥CD,CD=16,
∴CE=DE=8,
設OB=x,
又∵BE=4,
∴x2=(x﹣4)2+82,
解得:x=10,
∴⊙O的直徑是20
(2)解:∵∠M= ∠BOD,∠M=∠D,
∴∠D= ∠BOD,
∵AB⊥CD,
∴∠D=30°
【解析】(1)由AB⊥CD,得出DE的長,再設半徑為x,表示出OE的長,在Rt△ODE中,根據勾股定理建立方程即可求出半徑長。
(2)根據圓周角定理及∠M=∠D,易證明∠D= ∠BOD,從而可求出結果。
【考點精析】認真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,設△ABC的面積為S,周長為l.
(1)填表:
三邊a、b、c | ||
3、4、5 | 2 | |
5、12、13 | 4 | |
8、15、17 | 6 |
(2)如果,觀察上表猜想:
(用含有m的代數式表示).
(3)證明(2)中的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點P在射線OM上移動,兩直角邊分別與OA、OB相交于點C、D,問PC與PD相等嗎?試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“轉化”是數學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.
(1)請你根據已經學過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數;
(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數;
(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數嗎?只要寫出結論,不需要寫出解題過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖(1)).令△ABD不動,
(1)若將△ACE繞點A逆時針旋轉,連接DE,M是DE的中點,連接MB、MC(圖(2)),證明:MB=MC.
(2)若將圖(1)中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖(3)),判斷MB、MC的數量關系,并說明理由.
(3)在(2)中,若∠CAE的大小改變(圖(4)),其他條件不變,則(2)中的MB、MC的數量關系還成立嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數 的圖像經過點A(-1,-1)和點B(3,-9).
(1)求該二次函數的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標;
(3)點P(m , m)與點Q均在該函數圖像上(其中m>0),且這兩點關于拋物線的對稱軸對稱,求m的值及點Q 到x軸的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在山頂上有一座電視塔,在塔頂B處,測得地面上一點A的俯角α=60°,在塔底C處測得的俯角β=45°,已知BC=60m,求山高CD(精確到1m, ≈1.732)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com