精英家教網 > 初中數學 > 題目詳情

【題目】如圖,P是正方形ABCD對角線AC上一點,點EBC上,且PE=PB

1)求證:PE=PD;

2)連接DE,試判斷∠PED的度數,并證明你的結論.

【答案】1)見解析(2∠PED45°.

【解析】試題(1)根據正方形的性質四條邊都相等可得BC=CD,對角線平分一組對角線可得∠ACB=∠ACD,然后利用邊角邊證明△PBC△PDC全等,根據全等三角形對應邊相等可得PB=PD,然后等量代換即可得證;(2)根據全等三角形對應角相等可得∠PBC=∠PDC,根據等邊對等角可得∠PBC=∠PEB,從而得到∠PDC=∠PEB,再根據∠PEB+∠PEC=180°求出∠PDC+∠PEC=180°,然后根據四邊形的內角和定理求出∠DPE=90°,判斷出△PDE是等腰直角三角形,根據等腰直角三角形的性質求解即可.

試題解析:(1四邊形ABCD是正方形,

∴BC=CD,∠ACB=∠ACD

△PBC△PDC中,

,

∴△PBC≌△PDCSAS),

∴PB=PD,

∵PE=PB,

∴PE=PD

2)判斷∠PED=45°

四邊形ABCD是正方形,

∴∠BCD=90°,

∵△PBC≌△PDC,

∴∠PBC=∠PDC

∵PE=PB,

∴∠PBC=∠PEB

∴∠PDC=∠PEB,

∵∠PEB+∠PEC=180°

∴∠PDC+∠PEC=180°,

在四邊形PECD中,∠EPD=360°﹣∠PDC+∠PEC﹣∠BCD=360°﹣180°﹣90°=90°,

∵PE=PD,

∴△PDE是等腰直角三角形,

∴∠PED=45°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知拋物線:y=ax2+bx+c(a>0)經過A(﹣1,1),B(2,4)兩點,頂點坐標為(m,n),有下列結論: ①b<1;②c<2;③0<m< ;④n≤1.
則所有正確結論的序號是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.

(1)嘗試探究:
結論1:DM、MN的數量關系是
結論2:DM、MN的位置關系是;
(2)猜想論證:證明你的結論.
(3)拓展:如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉180°,其他條件不變,(1)中的兩個結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,CEBD,DEAC.

(1)證明:四邊形OCED為菱形;

(2)若AC=4,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是(  )

A. ABBC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC90°時,它是矩形 D. ACBD時,它是正方形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列各組數中,結果相等的是(
A.﹣12與(﹣1)2
B. ??
C.﹣|﹣2|與﹣(﹣2)
D.(﹣3)3與﹣33

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】珠海市某中學開展主題為我愛閱讀的專題調查活動,為了解學校1200名學生一年內閱讀書籍量,隨機抽取部分學生進行統計,繪制成如下尚未完成的頻數分布表和頻數分布直方圖.請根據圖表,解答下面的問題:

分組

頻數

頻率

0≤x<5

4

0.08

5≤x<10

14

0.28

10≤x<15

16

a

15≤x<20

b

c

20≤x<25

10

0.2

合計

d

1.00

(1)a=   ,b=   c=   

(2)補全頻數分布直方圖;

(3)根據該樣本,估計該校學生閱讀書籍數量在15本或15本以上的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】骰子是一種特別的數字立方體(如圖),它符合規則:相對兩面的點數之和總是7,下面四幅圖中可以折成符合規則的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點D,連接AE,則SADE:SCDB的值等于(
A.1:
B.1:
C.1:2
D.2:3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视