【題目】如圖,P是正方形ABCD對角線AC上一點,點E在BC上,且PE=PB.
(1)求證:PE=PD;
(2)連接DE,試判斷∠PED的度數,并證明你的結論.
【答案】(1)見解析(2)∠PED=45°.
【解析】試題(1)根據正方形的性質四條邊都相等可得BC=CD,對角線平分一組對角線可得∠ACB=∠ACD,然后利用“邊角邊”證明△PBC和△PDC全等,根據全等三角形對應邊相等可得PB=PD,然后等量代換即可得證;(2)根據全等三角形對應角相等可得∠PBC=∠PDC,根據等邊對等角可得∠PBC=∠PEB,從而得到∠PDC=∠PEB,再根據∠PEB+∠PEC=180°求出∠PDC+∠PEC=180°,然后根據四邊形的內角和定理求出∠DPE=90°,判斷出△PDE是等腰直角三角形,根據等腰直角三角形的性質求解即可.
試題解析:(1)∵四邊形ABCD是正方形,
∴BC=CD,∠ACB=∠ACD,
在△PBC和△PDC中,
,
∴△PBC≌△PDC(SAS),
∴PB=PD,
∵PE=PB,
∴PE=PD;
(2)判斷∠PED=45°.
∵四邊形ABCD是正方形,
∴∠BCD=90°,
∵△PBC≌△PDC,
∴∠PBC=∠PDC,
∵PE=PB,
∴∠PBC=∠PEB,
∴∠PDC=∠PEB,
∵∠PEB+∠PEC=180°,
∴∠PDC+∠PEC=180°,
在四邊形PECD中,∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,
又∵PE=PD,
∴△PDE是等腰直角三角形,
∴∠PED=45°.
科目:初中數學 來源: 題型:
【題目】已知拋物線:y=ax2+bx+c(a>0)經過A(﹣1,1),B(2,4)兩點,頂點坐標為(m,n),有下列結論: ①b<1;②c<2;③0<m< ;④n≤1.
則所有正確結論的序號是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)嘗試探究:
結論1:DM、MN的數量關系是;
結論2:DM、MN的位置關系是;
(2)猜想論證:證明你的結論.
(3)拓展:如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉180°,其他條件不變,(1)中的兩個結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD交于點O,CE∥BD,DE∥AC.
(1)證明:四邊形OCED為菱形;
(2)若AC=4,求四邊形CODE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】珠海市某中學開展主題為“我愛閱讀”的專題調查活動,為了解學校1200名學生一年內閱讀書籍量,隨機抽取部分學生進行統計,繪制成如下尚未完成的頻數分布表和頻數分布直方圖.請根據圖表,解答下面的問題:
分組 | 頻數 | 頻率 |
0≤x<5 | 4 | 0.08 |
5≤x<10 | 14 | 0.28 |
10≤x<15 | 16 | a |
15≤x<20 | b | c |
20≤x<25 | 10 | 0.2 |
合計 | d | 1.00 |
(1)a= ,b= c= .
(2)補全頻數分布直方圖;
(3)根據該樣本,估計該校學生閱讀書籍數量在15本或15本以上的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】骰子是一種特別的數字立方體(如圖),它符合規則:相對兩面的點數之和總是7,下面四幅圖中可以折成符合規則的骰子的是( ).
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點D,連接AE,則S△ADE:S△CDB的值等于( )
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com