精英家教網 > 初中數學 > 題目詳情
一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內通過,為什么?
(3)如果隧道內設雙行道,那么這輛貨車是否可以順利通過,為什么?
(1)由題意可知拋物線的頂點坐標(4,6),
設拋物線的方程為y=a(x-4)2+6,
又因為點A(0,2)在拋物線上,
所以有2=a(0-4)2+6.
所以a=-
1
4

因此有:y=-
1
4
(x-4)2
+6.

(2)令y=4,則有4=-
1
4
(x-4)2
+6,
解得x1=4+2
2
,x2=4-2
2

|x1-x2|=4
2
>2,
∴貨車可以通過;

(3)由(2)可知
1
2
|x1-x2|=2
2
>2,
∴貨車可以通過.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,是一學生擲鉛球時,鉛球行進高度y(cm)的函數圖象,點B為拋物線的最高點,則該同學的投擲成績為______米.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線經過一直線y=3x-3與x軸、y軸的交點,并經過(2,5)點.
求:(1)拋物線的解析式;
(2)拋物線的頂點坐標及對稱軸;
(3)當自變量x在什么范圍內變化時,函數y隨x的增大而增大?
(4)在坐標系內畫出拋物線的圖象.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0)、B(3,0)兩點,拋物線交y軸于點C(0,3),點D為拋物線的頂點.直線y=x-1交拋物線于點M、N兩點,過線段MN上一點P作y軸的平行線交拋物線于點Q.
(1)求此拋物線的解析式及頂點D的坐標;
(2)問點P在何處時,線段PQ最長,最長為多少;
(3)設E為線段OC上的三等分點,連接EP,EQ,若EP=EQ,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-3a經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)已知點D(m,-m-1)在第四象限的拋物線上,求點D關于直線BC對稱的點D'的坐標.
(3)在(2)的條件下,連接BD,問在x軸上是否存在點P,使∠PCB=∠CBD?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

豎直向上發射物體的高度h(m)滿足關系式h=-5t2+v0•t,其中t(s)是物體運動的時間,v0(m/s)是物體被發射時的速度.某公園計劃設計園內噴泉,噴水的最大高度要求達到15m,那么噴水的速度應該達到多少?(結果精確到0.01m/s)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當x任取一值時,x對應的函數值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.下列判斷:
①當x<0時,y1>y2;
②當x<0時,x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是-
1
2
2
2

其中正確的是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

蘋果熟了,從樹上落下所經過的路程s與下落的時間t滿足s=
1
2
gt2(g是不為0的常數),則s與t的函數圖象大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视