【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,則BE與DF有何位置關系?試說明理由.
【答案】BE∥DF.理由見解析.
【解析】
試題分析:根據四邊形的內角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根據角平分線定義、等角的余角相等易證明和BE與DF兩條直線有關的一對同位角相等,從而證明兩條直線平行.
試題解析:BE∥DF.理由如下:
∵∠A=∠C=90°(已知),
∴∠ABC+∠ADC=180°(四邊形的內角和等于360°).
∵BE平分∠ABC,DF平分∠ADC,
∴∠1=∠2=∠ABC,∠3=∠4=
∠ADC(角平分線的定義).
∴∠1+∠3=(∠ABC+∠ADC)=
×180°=90°(等式的性質).
又∠1+∠AEB=90°(三角形的內角和等于180°),
∴∠3=∠AEB(同角的余角相等).
∴BE∥DF(同位角相等,兩直線平行).
科目:初中數學 來源: 題型:
【題目】把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉,設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時,APCQ= ;
(2)將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,問APCQ的值是否改變?說明你的理由;
(3)在(2)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數關系式.(圖2,圖3供解題用)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】命題“一個銳角的補角大于這個銳角的余角”的條件是_______________________,結論是____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】指出下列命題的條件和結論.
(1)兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行;
(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3;
(3)銳角小于它的余角;
(4)如果a+c=b+c,那么a=b.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,連接BM.
(1)求直線AC的解析式;
(2)動點P從點A出發,沿折線ABC的方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S,點P的運動時間為t秒,求S與t之間的函數關系式(要求寫出自變量t的取值范圍);
(3)動點P從點A出發,沿線段AB方向以2個單位/秒的速度向終點B勻速運動,當∠MPB與∠BCO互為余角時,試確定t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,矩形OABC中,A(10,0),C(0,4),D為OA的中點,P為BC邊上一點.若△POD為等腰三角形,則所有滿足條件的點P的坐標為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com