【題目】某書店同時購進九年級數學,語文兩種輔導書共冊,其進價和售價如下表所示:
數學 | 語文 | |
進價(元/冊) | ||
售價(元/冊) |
設購進語文輔導書冊.
已知當該書店購進數學輔導書的數量是語文輔導書的
倍時,恰好用去
元,求
的值.
若設該書店售完這
冊輔導書的總利潤為
元.
①求與
之間的函數關系式;
②該書店計劃最多投入元用于購買這兩種輔導書,則至少要購進多少冊語文輔導書?書店可獲得的最大利潤是多少?
科目:初中數學 來源: 題型:
【題目】如圖,中,
,過點
作
的平行線與
的平分線交于點
,連接
.
(1)求證:四邊形是菱形;
(2)連接與
交于點
,過點
作
的延長線交于
點,連接
,若
,
,直接寫出
的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數y=(x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數、反比例函數的解析式;
(2)反比例函數圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線經過點A(-1,0)、B(4,0),與y軸交于點C(0,4).
(1)求拋物線的表達式;
(2)點P為直線BC上方拋物線的一點,分別連接PB、PC,若直線BC恰好平分四邊形COBP的面積,求P點坐標;
(3)在(2)的條件下,是否在該拋物線上存在一點Q,該拋物線對稱軸上存在一點N,使得以A、P、Q、N為頂點的四邊形為平行四邊形?若存在,求出Q點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)經過點(﹣1,0),且滿足4a+2b+c>0,有下列結論:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正確結論的個數是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中拋物線y=﹣x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的表達式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BCD的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,N是線段EF上一動點,M(m,0)是x軸上一動點,若∠MNC=90°,直接寫出實數m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發現:當正方形AEFG繞點A旋轉,如圖②所示.
①線段DG與BE之間的數量關系是 ;
②直線DG與直線BE之間的位置關系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,上述結論是否成立,并說明理由.
(3)應用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙0經過點D,E是⊙O上一點,且∠AED=45°,
(1)求證:CD是⊙O的切線.
(2)若⊙O的半徑為3,AE=5,求∠DAE的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com