精英家教網 > 初中數學 > 題目詳情

如圖,在直角坐標系中,點A(0,4),B(-3,4),C(-6,0),動點P從點A出發以1個單位/秒的速度在y軸上向下運動,動點Q同時從點C出發以2個單位/秒的速度在x軸上向右運動,過點P作PD⊥y軸,交OB于D,連接DQ.當點P與點O重合時,兩動點均停止運動.設運動的時間為t秒.

(1)當t=1時,求線段DP的長;
(2)連接CD,設△CDQ的面積為S,求S關于t的函數解析式,并求出S的最大值;
(3)運動過程中是否存在某一時刻,使△ODQ與△ABC相似?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.

(1);(2)S=,當時,S最大值=4;(3)

解析試題分析:(1)先由題意得到OA=4,AB=3,CO=6,再求出當t=1時,AP、OP的長,最后根據PD⊥y軸,AB⊥y軸,結合平行線分線段成比例即可列比例式求解;
(2)作DE⊥CO于點E,分別用含t的字母表示出CQ、AP、OP,即可表示出DE的長,再根據三角形的面積公式即可得到S關于t的函數解析式,根據二次函數的性質即可求得S的最大值;
(3)分兩種情況,結合相似三角形的判定方法討論即可.
(1)由A(0,4),B(-3,4),C(-6,0)可知OA=4,AB=3,CO=6,
當t=1時,AP=1,則OP=3,
∵PD⊥y軸,AB⊥y軸
∴PD∥AB
 
 
解得DP=;
(2)CQ=2t,AP=t,OP=4–t
作DE⊥CO于點E,則DE=OP=4–t   
∴S==×2t×(4–t)=   
時,S最大值=4
(3)分兩種情況討論:
①當時,點Q在CO上運動(當t=3時,△ODQ不存在)
∵AB∥CO 
∴∠BOC=∠ABO<∠ABC
可證得BO=BC
∴∠BOC=∠BCO>∠BCA
∵AB∥CO
∴∠BAC=∠ACO<∠BCO=∠BOC
∴當時,△ODQ與△ABC不可能相似。
②當時,點Q在x軸正半軸上運動,
延長AB,由AB∥CO可得∠FBC=∠BCO=∠BOC,
∴∠ABC=∠DOQ
OQ=,由DP∥AB可得OD=
時,
 ,內;
時,
,內;
∴存在,使△ODQ與△ABC相似。
考點:本題考查的是二次函數的最值,平行線分線段成比例,相似三角形的判定
點評:解答本題的關鍵是熟練掌握求二次函數的最值的方法:公式法或配方法;同時熟練運用平行線分線段成比例,準確列出比例式解決問題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數y=
6
x
的圖象經過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經過點A的一次函數圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數的解析式.
(3)點D在反比例函數y=
6
x
的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视