精英家教網 > 初中數學 > 題目詳情

已知關于x的方程數學公式的兩個解是數學公式;
又已知關于x的方程數學公式的兩個解是數學公式;
又已知關于x的方程數學公式的兩個解是數學公式
…,
小王認真分析和研究上述方程的特征,提出了如下的猜想.
關于x的方程數學公式的兩個解是數學公式;并且小王在老師的幫助下完成了嚴謹的證明(證明過程略).小王非常高興,他向同學提出如下的問題.
(1)關于x的方程數學公式的兩個解是x1=______和x2=______;
(2)已知關于x的方程數學公式,則x的兩個解是多少?

解:(1)根據猜想的結論,則x1=11,x2=

(2)原方程可以變形為x-1+=11+,
則x-1=11,x-1=
則x1=12,x2=
分析:(1)根據上述的結論方程的兩個解是,即可猜想得到答案;
(2)可以把x-1看作一個整體,即方程兩邊同時減去1,得x-1+=11+,然后根據猜想得到x-1=11,x-1=,進一步求得方程的解.
點評:此題要能夠根據探索得到的結論進行分析求解,能夠運用換元法進行求解,有一定難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知關于x的方程x2-(2k-3)x+k2+1=0.
問:(1)當k為何值時,此方程有實數根;
(2)若此方程的兩實數根x1、x2,滿足|x1|+|x2|=3,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<數學公式
∴當k<數學公式時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2=數學公式=0,解得k=數學公式
檢驗知k=數學公式數學公式=0的解.
所以當k=數學公式時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源:《第2章 一元二次方程》2010年創新題(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源:《第23章 一元二次方程》2009年單元測試卷(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數學 來源:2003年山東省濰坊市中考數學試卷(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數根x1,x2
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數根.
(2)存在.如果方程的兩個實數根互為相反數,則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數根x1,x2互為相反數.
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视