【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正確的結論是( )
A. B.
C.
D.
【答案】C
【解析】
由已知條件可知∠ABC+∠ACB=90°,又因為CD、BE分別是△ABC的角平分線,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行線的性質可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知選項①③④正確.
解:∵AB⊥AC.
∴∠BAC=90°,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=90°
∵CD、BE分別是△ABC的角平分線,
∴2∠FBC+2∠FCB=90°
∴∠FBC+∠FCB=45°
∴∠BFC=135°故④正確.
∵AG∥BC,
∴∠BAG=∠ABC
∵∠ABC=2∠ABF
∴∠BAG=2∠ABF 故①正確.
∵AB⊥AC,
∴∠ABC+∠ACB=90°,
∵AG⊥BG,
∴∠ABG+∠GAB=90°
∵∠BAG=∠ABC,
∴∠ABG=∠ACB 故③正確.
故選:C.
科目:初中數學 來源: 題型:
【題目】某森林公園從正門到側門有一條公路供游客運動,甲徒步從正門出發勻速走向側門,出發一段時間開始休息,休息了0.6小時后仍按原速繼續行走.乙與甲同時出發,騎自行車從側門勻速前往正門,到達正門后休息0.2小時,然后按原路原速勻速返回側門.圖中折線分別表示甲、乙到側門的路程y(km)與甲出發時間x(h)之間的函數關系圖象.根據圖象信息解答下列問題.
(1)求甲在休息前到側門的路程y(km)與出發時間x(h)之間的函數關系式.
(2)求甲、乙第一次相遇的時間.
(3)直接寫出乙回到側門時,甲到側門的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】臨近端午節,某食品店每天賣出300只粽子,賣出一只粽子的利潤為1元.經調查發現,零售單價每降0.1元,每天可多賣出100只粽子.為了使每天獲得的利潤更多,該店決定把零售單價下降m(0<m<1)元,
(1)零售單價降價后,每只利潤為 元,該店每天可售出 只粽子.
(2)在不考慮其他因素的條件下,當零售單價下降多少元時,才能使該店每天獲取的利潤是420元,且賣出的粽子更多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在1~7月份,某地的蔬菜批發市場指導菜農生產和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤最大的月份可能是( )
A.1月份
B.2月份
C.5月份
D.7月份
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業用規格是170×40的標準板材作為原材料,按照如圖1所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm)
(1)求圖中a,b的值;
(2)若將50張標準板材按裁法一裁剪,10張標準板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側面或底面,做成如圖2的豎式與橫式兩種無蓋的裝飾盒若干(接縫處的長度忽略不計).
①一共可裁剪出甲型板材______張,乙型板材______張;
②設可以做出豎式和橫式兩種無蓋裝飾盒一共x個,則x的最大值是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店經銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發現,這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=﹣x+60(30≤x≤60).設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐:
問題發現:學完四邊形的有關知識后,創新小組的同學進一步研究特殊的四邊形,發現了一個結論.如圖1,已知四邊形是正方形,根據勾股定理和正方形的性質,很容易能夠證明
.
問題探究:
(1)如圖2,已知四邊形是矩形,若
,則
的值是 ;
的值是 ;
(2)如圖3,已知四邊形是菱形,證明:
;
拓廣探索:
(3)智慧小組看了創新小組交流后,提出了一個猜想,如圖4,在中,
,你認為這個猜想正確嗎?請說明理由;
(4)請用文字語言敘述中得出的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com