精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=3 ,則下列結論:①F是CD的中點;②⊙O的半徑是2;③AE= CE;④S陰影= .其中正確結論的序號是

【答案】①②④
【解析】解:①∵AF是AB翻折而來,∴AF=AB=6,
∵AD=BC=3 ,∴DF= =3,
∴F是CD中點;∴①正確;②連接OP,

∵⊙O與AD相切于點P,∴OP⊥AD,
∵AD⊥DC,∴OP∥CD,
= ,
設OP=OF=x,則 = ,解得:x=2,
∴②正確;③∵RT△ADF中,AF=6,DF=3,
∴∠DAF=30°,∠AFD=60°,
∴∠EAF=∠EAB=30°,
∴AE=2EF;
∵∠AFE=90°,
∴∠EFC=90°﹣∠AFD=30°,
∴EF=2EC,
∴AE=4CE,∴③錯誤;
④連接OG,作OH⊥FG,

∵∠AFD=60°,OF=OG,∴△OFG為等邊△;同理△OPG為等邊△;
∴∠POG=∠FOG=60°,OH= OG= ,S扇形OPG=S扇形OGF
∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG
=S矩形OPDH S△OFG=2× ×2× )= .∴④正確;
所以答案是①②④.
【考點精析】認真審題,首先需要了解矩形的性質(矩形的四個角都是直角,矩形的對角線相等),還要掌握切線的性質定理(切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:① = ;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是(
A.①②③④
B.①④
C.②③④
D.①②③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】九 (1)班48名學生參加學校舉行的“珍惜生命,遠離毒品”只是競賽初賽,賽后,班長對成績進行分析,制作如下的頻數分布表和頻數分布直方圖(未完成).余下8名學生成績尚未統計,這8名學生成績如下:60,90,63,99,67,99,99,68. 頻數分布表

分數段

頻數(人數)

60≤x<70

a

70≤x<80

16

80≤x<90

24

90≤x<100

b


請解答下列問題:
(1)完成頻數分布表,a= , b=
(2)補全頻數分布直方圖;
(3)全校共有600名學生參加初賽,估計該校成績90≤x<100范圍內的學生有多少人?
(4)九 (1)班甲、乙、丙三位同學的成績并列第一,現選兩人參加決賽,求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點,線段BE的垂直平分線交邊BC于點D.設BD=x,tan∠ACB=y,則( )

A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC內接于⊙O,點C在劣弧AB上(不與點A,B重合),點D為弦BC的中點,DE⊥BC,DE與AC的延長線交于點E,射線AO與射線EB交于點F,與⊙O交于點G,設∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,

(1)點點同學通過畫圖和測量得到以下近似數據:

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β關于ɑ的函數表達式,γ關于ɑ的函數表達式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,信號塔PQ座落在坡度i=1:2的山坡上,其正前方直立著一警示牌.當太陽光線與水平線成60°角時,測得信號塔PQ落在斜坡上的影子QN長為2 米,落在警示牌上的影子MN長為3米,求信號塔PQ的高.(結果不取近似值)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們規定:一個正n邊形(n為整數,n≥4)的最短對角線與最長對角線長度的比值叫做這個正n邊形的“特征值”,記為λn , 那么λ6=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c過點A(﹣1,0),B(3,0),C(0,3)點M、N為拋物線上的動點,過點M作MD∥y軸,交直線BC于點D,交x軸于點E.

(1)求二次函數y=ax2+bx+c的表達式;
(2)過點N作NF⊥x軸,垂足為點F,若四邊形MNFE為正方形(此處限定點M在對稱軸的右側),求該正方形的面積;
(3)若∠DMN=90°,MD=MN,求點M的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=x+b與雙曲線y= (k為常數,k≠0)在第一象限內交于點A(1,2),且與x軸、y軸分別交于B,C兩點.
(1)求直線和雙曲線的解析式;
(2)點P在x軸上,且△BCP的面積等于2,求P點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视